Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural plasticity of single chromatin fibers revealed by torsional manipulation

This article has been updated

Abstract

Magnetic tweezers were used to study the mechanical response under torsion of single nucleosome arrays reconstituted on tandem repeats of 5S positioning sequences. Regular arrays are extremely resilient and can reversibly accommodate a large amount of supercoiling without much change in length. This behavior is quantitatively described by a molecular model of the chromatin three-dimensional architecture. In this model, we assume the existence of a dynamic equilibrium between three conformations of the nucleosome, corresponding to different crossing statuses of the entry/exit DNAs (positive, null or negative, respectively). Torsional strain displaces that equilibrium, leading to an extensive reorganization of the fiber's architecture. The model explains a number of long-standing topological questions regarding DNA in chromatin and may provide the basis to better understand the dynamic binding of chromatin-associated proteins.

Note: In the supplementary information initially published online to accompany this article, Supplementary Figure 2 was mistakenly replaced by Supplementary Equation 2. The error has been corrected online.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experiment.
Figure 2: Micromanipulation of single chromatin fibers.
Figure 3: Tension dependence of the fiber behavior.
Figure 4: Salt-dependence of the fiber's mechanical behavior.
Figure 5: Three-state model of the chromatin fiber.
Figure 6: Single-parameter fitting.
Figure 7: Chromatin as a topological buffer.

Similar content being viewed by others

Change history

  • 30 April 2006

    Figure incorrect and author name incorrect in pubmed

References

  1. VanHolde, K.E. Chromatin (Springer-Verlag, New York, 1988).

  2. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  3. Germond, J.E., Hirt, B., Oudet, P., Gross-Bellark, M. & Chambon, P. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc. Natl. Acad. Sci. USA 72, 1843–1847 (1975).

    Article  CAS  Google Scholar 

  4. Wolffe, A. Chromatin (Academic Press, London, 1998).

    Google Scholar 

  5. Cui, Y. & Bustamante, C. Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. USA 97, 127–132 (2000).

    Article  CAS  Google Scholar 

  6. Brower-Toland, B.D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

    Article  CAS  Google Scholar 

  7. Hayes, J.J. & Hansen, J.C. New insights into unwrapping DNA from the nucleosome from a single-molecule optical tweezers method. Proc. Natl. Acad. Sci. USA 99, 1752–1754 (2002).

    Article  CAS  Google Scholar 

  8. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  Google Scholar 

  9. Simpson, R.T., Thoma, F. & Brubaker, J.M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42, 799–808 (1985).

    Article  CAS  Google Scholar 

  10. Prunell, A. & Sivolob, A. Paradox lost: nucleosome structure and dynamics by the DNA minicircle approach. in Chromatin Structure and Dynamics: State-of-the-Art Vol. 39 (eds. Zlatanova, J. & Leuba, S.H.) 45–73 (Elsevier, London, 2004).

    Chapter  Google Scholar 

  11. Catez, F. et al. Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol. Cell. Biol. 24, 4321–4328 (2004).

    Article  CAS  Google Scholar 

  12. Phair, R.D. et al. Global nature of dynamic protein-chromatin interactions in vivo: three-dimensional genome scanning and dynamic interaction networks of chromatin proteins. Mol. Cell. Biol. 24, 6393–6402 (2004).

    Article  CAS  Google Scholar 

  13. McBryant, S.J. et al. Preferential binding of the histone (H3–H4)2 tetramer by NAP1 is mediated by the amino-terminal histone tails. J. Biol. Chem. 278, 44574–44583 (2003).

    Article  CAS  Google Scholar 

  14. Leuba, S.H. et al. Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc. Natl. Acad. Sci. USA 91, 11621–11625 (1994).

    Article  CAS  Google Scholar 

  15. Bouchiat, C. & Mezard, M. Elasticity model of a supercoiled DNA molecule. Phys. Rev. Lett. 80, 1556–1559 (1998).

    Article  CAS  Google Scholar 

  16. Ben-Haim, E., Lesne, A. & Victor, J.M. Chromatin: a tunable spring at work inside chromosomes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 051921 (2001).

    Article  CAS  Google Scholar 

  17. Schiessel, H., Gelbart, W.M. & Bruinsma, R. DNA folding: structural and mechanical properties of the two-angle model for chromatin. Biophys. J. 80, 1940–1956 (2001).

    Article  CAS  Google Scholar 

  18. Woodcock, C.L., Grigoriev, S.A., Horowitz, R.A. & Whitaker, N. A chromatin folding model that incorporates linker variability generates fibers resembling native structures. Proc. Natl. Acad. Sci. USA 90, 9021–9025 (1993).

    Article  CAS  Google Scholar 

  19. Barbi, M., Mozziconacci, J. & Victor, J.M. How the chromatin fiber deals with topological constraints? Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 031910 (2005).

    Article  Google Scholar 

  20. Schalch, T., Duda, S., Sargent, D.F. & Richmond, T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fiber. Nature 436, 138–141 (2005).

    Article  CAS  Google Scholar 

  21. De Lucia, F., Alilat, M., Sivolob, A. & Prunell, A. Nucleosome dynamics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles. J. Mol. Biol. 285, 1101–1119 (1999).

    Article  CAS  Google Scholar 

  22. Bednar, J. et al. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher order folding and compaction of chromatin. Proc. Natl. Acad. Sci. USA 95, 14173–14178 (1998).

    Article  CAS  Google Scholar 

  23. Goulet, I., Zivanovic, Y., Prunell, A. & Revet, B. Chromatin reconstitution on small DNA rings. I. J. Mol. Biol. 200, 253–266 (1988).

    Article  CAS  Google Scholar 

  24. Luger, K. & Richmond, T.J. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8, 33–40 (1998).

    Article  CAS  Google Scholar 

  25. Sivolob, A., De Lucia, F., Revet, B. & Prunell, A. Nucleosome dynamics. II. High flexibility of nucleosome entering and exiting DNAs to positive crossing. An ethidium bromide fluorescence study of mononucleosomes on DNA minicircles. J. Mol. Biol. 285, 1081–1099 (1999).

    Article  CAS  Google Scholar 

  26. Sivolob, A., Lavelle, C. & Prunell, A. Sequence-dependent nucleosome structural and dynamic polymorphism. Potential involvement of histone H2B N-terminal tail proximal domain. J. Mol. Biol. 326, 49–63 (2003).

    Article  CAS  Google Scholar 

  27. Sivolob, A. & Prunell, A. Linker histone-dependent organization and dynamics of nucleome entry/exit DNAs. J. Mol. Biol. 331, 1025–1040 (2003).

    Article  CAS  Google Scholar 

  28. Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).

    Article  CAS  Google Scholar 

  29. Sarkar, A. & Marko, J.F. Removal of DNA-bound proteins by DNA twisting. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 061909 (2001).

    Article  CAS  Google Scholar 

  30. Shaw, S.Y. & Wang, J.C. Knotting of a DNA chain during ring closure. Science 260, 533–536 (1993).

    Article  CAS  Google Scholar 

  31. Angelov, D., Vitolo, J.M., Mutskov, V., Dimitrov, S. & Hayes, J.J. Preferential interreaction of the core histone tail domains with linker DNA. Proc. Natl. Acad. Sci. USA 98, 6599–6604 (2001).

    Article  CAS  Google Scholar 

  32. Klug, A. & Lutter, L.C. The helical periodicity of DNA on the nucleosome. Nucleic Acids Res. 9, 4267–4283 (1981).

    Article  CAS  Google Scholar 

  33. Prunell, A. A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues. Biophys. J. 74, 2531–2544 (1998).

    Article  CAS  Google Scholar 

  34. Norton, V.G., Imai, B.S., Yau, P. & Bradbury, E.M. Histone acetylation reduces nucleosome core particle linking number change. Cell 57, 449–457 (1989).

    Article  CAS  Google Scholar 

  35. Garner, M.M., Felsenfeld, G., O'Dea, M.H. & Gellert, M. Effects of DNA supercoiling on the topological properties of nucleosomes. Proc. Natl. Acad. Sci. USA 84, 2620–2623 (1987).

    Article  CAS  Google Scholar 

  36. Clark, D.J., Ghirlando, R., Felsenfeld, G. & Eisenberg, H. Effect of positive supercoiling on DNA compaction by nucleosome cores. J. Mol. Biol. 234, 297–301 (1993).

    Article  CAS  Google Scholar 

  37. Misteli, T., Gunjan, A., Hock, R., Bustin, M. & Brown, D.T. Dynamic binding of histone H1 to chromatin in live cells. Nature 408, 877–881 (2000).

    Article  CAS  Google Scholar 

  38. Liu, L.F. & Wang, J.C. Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. USA 84, 7024–7027 (1987).

    Article  CAS  Google Scholar 

  39. Bustin, M., Catez, F. & Lim, J.H. The dynamics of histone H1 function in chromatin. Mol. Cell 17, 617–620 (2005).

    Article  CAS  Google Scholar 

  40. Hansen, J.C. & Lohr, D. Assembly and structural properties of subsaturated chromatin arrays. J. Biol. Chem. 268, 5840–5848 (1993).

    CAS  PubMed  Google Scholar 

  41. Fulconis, R. et al. Twisting and untwisting a single DNA molecule covered by RecA protein. Biophys. J. 87, 2552–2563 (2004).

    Article  CAS  Google Scholar 

  42. Meersseman, G., Pennings, S. & Bradbury, E.M. Mobile nucleosomes–a general behavior. EMBO J. 11, 2951–2959 (1992).

    Article  CAS  Google Scholar 

  43. Mangenot, S., Leforestier, A., Durand, D. & Livolant, F. X-ray diffraction characterization of the dense phases formed by nucleosome core particles. Biophys. J. 84, 2570–2584 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to G. Almouzni and J.P. Quivy for providing material in preliminary experiments, E. Ben-Haim and C. Bouchiat for discussions and K. Dorfman and A. Sivolob for critical reading. A.B., N.C.eS., G.W., C.L. and J.M. thank the French Ministry of Research for AC-MENRT fellowships. This work was supported by the Centre National de la Recherche Scientifique (A.P.'s and J.M.V.'s laboratories) and by grants from the Centre National de la Recherche Scientifique/Ministère de l'Education Nationale de la Recherche et de la Technologie DRAB programs and the Institut Curie Physics of the Cell cooperative program (J.L.V.'s laboratory).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ariel Prunell or Jean-Louis Viovy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Regular and irregular fibers (PDF 227 kb)

Supplementary Fig. 2

The 'single-state' fiber (PDF 288 kb)

Supplementary Fig. 3

'Open-state' and 'positive-state' ideal fibers (PDF 297 kb)

Supplementary Fig. 4

The 'three-state' fiber (PDF 290 kb)

Supplementary Fig. 5

Plectoneme structures (PDF 764 kb)

Supplementary Discussion (PDF 132 kb)

Supplementary Equation 1

Length and topology. (PDF 179 kb)

Supplementary Equation 2

Gibbs free energy of a fiber containing nucleosomes fluctuating between 3 states. (PDF 19 kb)

Supplementary Equation 3

Proportion of nucleosomes in the negative state as a function of the external torque C. (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bancaud, A., Conde e Silva, N., Barbi, M. et al. Structural plasticity of single chromatin fibers revealed by torsional manipulation. Nat Struct Mol Biol 13, 444–450 (2006). https://doi.org/10.1038/nsmb1087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing