Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconstruction of the chemotaxis receptor–kinase assembly

Abstract

In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion–coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA–CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of the cytoplasmic domains from T. maritima MCP1143C and E. coli TsrC.
Figure 2: Pulsed ESR for reconstructing protein-protein complexes.
Figure 3: CheW-CheA interactions.
Figure 4: Structural implications for the CheA–CheW–MCP1143C complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Wadhams, G.H. & Armitage, J.P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004).

    Article  CAS  Google Scholar 

  2. Parkinson, J.S., Ames, P. & Studdert, C.A. Collaborative signaling by bacterial chemoreceptors. Curr. Opin. Microbiol. 8, 116–121 (2005).

    Article  CAS  Google Scholar 

  3. Sourjik, V. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12, 569–576 (2004).

    Article  CAS  Google Scholar 

  4. Falke, J.J. & Hazelbauer, G.L. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci. 26, 257–265 (2001).

    Article  CAS  Google Scholar 

  5. Falke, J.J. & Kim, S-H. Structure of a conserved receptor domain that regulates kinase activity: the cytoplasmic domain of bacterial taxis receptors. Curr. Opin. Struct. Biol. 10, 462–469 (2000).

    Article  CAS  Google Scholar 

  6. Chao, X. et al. A receptor-modifying deamidase in complex with a signaling phosphatase reveals reciprocal regulation. Cell 124, 561–571 (2006).

    Article  CAS  Google Scholar 

  7. Szurmant, H. & Ordal, G.W. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004).

    Article  CAS  Google Scholar 

  8. Ottemann, K.M., Xiao, W., Shin, Y-K. & Koshland, D.E., Jr. A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751–1754 (1999).

    Article  CAS  Google Scholar 

  9. Bilwes, A.M., Park, S.Y., Quezada, C.M., Simon, M.I. & Crane, B.R. Structure and runction of CheA, the histidine kinase central to bacterial chemotaxis. in Histidine Kinases in Signal Transduction (eds. Inouye, M. & Dutta, R.) 48–74 (Academic Press, San Diego, 2003).

    Google Scholar 

  10. Bilwes, A.M., Alex, L.A., Crane, B.R. & Simon, M.I. Structure of CheA, a signal-transducing histidine kinase. Cell 96, 131–141 (1999).

    Article  CAS  Google Scholar 

  11. Griswold, I.J. et al. The solution structure and interactions of CheW from Thermotoga maritima. Nat. Struct. Biol. 9, 121–125 (2002).

    Article  CAS  Google Scholar 

  12. Stewart, R.C., Jahreis, K. & Parkinson, J.S. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39, 13157–13165 (2000).

    Article  CAS  Google Scholar 

  13. Quezada, C.M. et al. Structural and chemical requirements for histidine phosphorylation by the chemotaxis kinase CheA. J. Biol. Chem. 280, 30581–30585 (2005).

    Article  CAS  Google Scholar 

  14. Lybarger, S.R. & Maddock, J.R. Polarity in action: asymmetric protein localization in bacteria. J. Bacteriol. 183, 3261–3267 (2001).

    Article  CAS  Google Scholar 

  15. Gestwicki, J.E. & Kiessling, L.L. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 415, 81–84 (2002).

    Article  CAS  Google Scholar 

  16. Lamanna, A.C., Ordal, G.W. & Kiessling, L.L. Large increases in attractant concentration disrupt the polar localization of bacterial chemoreceptors. Mol. Microbiol. 57, 774–785 (2005).

    Article  CAS  Google Scholar 

  17. Studdert, C.A. & Parkinson, J.S. Crosslinking snapshots of bacterial chemoreceptor squads. Proc. Natl. Acad. Sci. USA 101, 2117–2122 (2004).

    Article  CAS  Google Scholar 

  18. Ames, P., Studdert, C.A., Reiser, R.H. & Parkinson, J.S. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 7060–7065 (2002).

    Article  CAS  Google Scholar 

  19. Li, M. & Hazelbauer, G.L. Adaptational assistance in clusters of bacterial chemoreceptors. Mol. Microbiol. 56, 1617–1626 (2005).

    Article  CAS  Google Scholar 

  20. Kim, K.K., Yokota, H. & Kim, S.H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–792 (1999).

    Article  CAS  Google Scholar 

  21. Kim, S.H., Wang, W. & Kim, K.K. Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity. Proc. Natl. Acad. Sci. USA 99, 11611–11615 (2002).

    Article  CAS  Google Scholar 

  22. Coleman, M.D., Bass, R.B., Mehan, R.S. & Falke, J.J. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching. Biochemistry 44, 7687–7695 (2005).

    Article  CAS  Google Scholar 

  23. Starrett, D.J. & Falke, J.J. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity. Biochemistry 44, 1550–1560 (2005).

    Article  CAS  Google Scholar 

  24. Boukhvalova, M., Dahlquist, F.W. & Stewart, R.C. CheW binding interactions with CheA and Tar—importance for chemotaxis signaling in Escherichia coli. J. Biol. Chem. 277, 22251–22259 (2002).

    Article  CAS  Google Scholar 

  25. Bourret, R.B., Davagnino, J. & Simon, M.I. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol. 175, 2097–2101 (1993).

    Article  CAS  Google Scholar 

  26. Zhao, J. & Parkinson, J.S. Mutational analysis of the chemoreceptor-coupling domain of the E. coli chemotaxis signaling kinase CheA. J. Bacteriol. (in the press).

  27. Hamel, D.J. & Dahlquist, F.W. The contact interface of a 120 kD CheA-CheW complex by methyl TROSY interaction spectroscopy. J. Am. Chem. Soc. 127, 9676–9677 (2005).

    Article  CAS  Google Scholar 

  28. Park, S.Y., Quezada, C.M., Bilwes, A.M. & Crane, B.R. Subunit exchange by CheA histidine kinases from the mesophile Escherichia coli and the thermophile Thermotoga maritima. Biochemistry 43, 2228–2240 (2004).

    Article  CAS  Google Scholar 

  29. Liu, J.D. & Parkinson, J.S. Genetic evidence for interaction between the CheW and Tsr proteins during chemoreceptor signaling by Escherichia coli. J. Bacteriol. 173, 4941–4951 (1991).

    Article  CAS  Google Scholar 

  30. Zhou, J. & Parkinson, J.S. Cysteine-scanning analysis of the chemoreceptor-coupling domain of the E. coli chemotaxis signaling kinase CheA. J. Bacteriol. (in the press).

  31. Boukhvalova, M., VanBruggen, R. & Stewart, R.C. CheA kinase and chemoreceptor interactions on CheW. J. Biol. Chem. 277, 23596–23603 (2002).

    Article  CAS  Google Scholar 

  32. Gegner, J.A., Graham, D.R., Roth, A.F. & Dahlquist, F.W. Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell 70, 975–982 (1992).

    Article  CAS  Google Scholar 

  33. Levit, M.N. & Stock, J.B. Receptor methylation controls the magnitude of stimulus-response coupling in bacterial chemotaxis. J. Biol. Chem. 277, 36760–36765 (2002).

    Article  CAS  Google Scholar 

  34. Li, M. & Hazelbauer, G.L. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186, 3687–3694 (2004).

    Article  CAS  Google Scholar 

  35. Li, G. & Weis, R.M. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli. Cell 100, 357–365 (2000).

    Article  CAS  Google Scholar 

  36. Bornhorst, J.A. & Falke, J.J. Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state. Biochemistry 39, 9486–9493 (2000).

    Article  CAS  Google Scholar 

  37. Liu, Y., Levit, M., Lurz, R., Surette, M.G. & Stock, J.B. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis. EMBO J. 16, 7231–7240 (1997).

    Article  CAS  Google Scholar 

  38. Francis, N.R., Wolanin, P.M., Stock, J.B., Derosier, D.J. & Thomas, D.R. Three-dimensional structure and organization of a receptor/signaling complex. Proc. Natl. Acad. Sci. USA 101, 17480–17485 (2004).

    Article  CAS  Google Scholar 

  39. Shimizu, T.S. et al. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nat. Cell Biol. 2, 792–796 (2000).

    Article  CAS  Google Scholar 

  40. Rao, C.V., Frenklach, M. & Arkin, A.P. An allosteric model for transmembrane signaling in bacterial chemotaxis. J. Mol. Biol. 343, 291–303 (2004).

    Article  CAS  Google Scholar 

  41. Studdert, C.A. & Parkinson, J.S. Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc. Natl. Acad. Sci. USA 102, 15623–15628 (2005).

    Article  CAS  Google Scholar 

  42. Levit, M.N., Liu, Y. & Stock, J.B. Mechanism of CheA protein kinase activation in receptor signaling complexes. Biochemistry 38, 6651–6658 (1999).

    Article  CAS  Google Scholar 

  43. Otwinowski, A. & Minor, W. Processing of X-ray diffraction data in oscillation mode. Methods Enzymol. 276, 307–325 (1997).

    Article  CAS  Google Scholar 

  44. Brunger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  45. Borbat, P.P. & Freed, J.H. Multiple-quantum ESR and distance measurements. Chem. Phys. Lett. 313, 145–154 (1999).

    Article  CAS  Google Scholar 

  46. Borbat, P.P. & Freed, J.H. in Biological Magnetic Resonance Vol. 21 (eds. Berliner, L.J., Eaton, G.R. & Eaton, S.S.) 383–459 (Kluwer Academic/Plenum Publishers, New York, USA, 2001).

    Google Scholar 

  47. Borbat, P.P., Mchaourab, H.S. & Freed, J.H. Protein structure determination using long-distance constraints from double-quantum coherence ESR: study of T4 lysozyme. J. Am. Chem. Soc. 124, 5304–5314 (2002).

    Article  CAS  Google Scholar 

  48. Milov, A.D., Maryasov, A.G. & Tsvetkov, Y.D. Pulsed electron double resonance (PELDOR) and its applications in free-radicals research. Appl. Magn. Reson. 15, 107–143 (1998).

    Article  CAS  Google Scholar 

  49. Pfannebecker, V. et al. Determination of end-to-end distances in oligomers by pulsed EPR. J. Phys. Chem. 100, 13428–13432 (1996).

    Article  CAS  Google Scholar 

  50. Borbat, P.P., Crepeau, R.H. & Freed, J.H. Multifrequency two-dimensional Fourier transform ESR: an X/Ku-band spectrometer. J. Magn. Reson. 127, 155–167 (1997).

    Article  CAS  Google Scholar 

  51. Pake, G.E. Nuclear resonance absorption in hydrated crystale—fine structure of the proton line. J. Chem. Phys. 16, 327–336 (1948).

    Article  CAS  Google Scholar 

  52. Chiang, Y.W., Borbat, P.P. & Freed, J.H. The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J. Magn. Reson. 172, 279–295 (2005).

    Article  CAS  Google Scholar 

  53. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Arango for help with distance-geometry calculations, C. Kim for advice on crystal growth, S. Oga and W. Hubbell for advice on nitroxide spin-labeling, J.S. Parkinson, R. Alexander, I.B. Zhulin and J.J. Falke for helpful discussions and NSLS, CHESS and NE-CAT at the Advanced Photon Source for access to data-collection facilities. This work was supported by US National Institutes of Health grants GM:R01066775 (to B.R.C.) and NCRR:P41-RR016292 (to J.H.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R Crane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Initial electron density map for the MCP1143c crystal structure (PDF 1026 kb)

Supplementary Fig. 2

Omit electron density map for the CheAΔ354–CheW crystal structure (PDF 941 kb)

Supplementary Fig. 3

P4 domain orientations in the CheAΔ354–CheW crystallographic complex (PDF 579 kb)

Supplementary Fig. 4

The CheA–CheW–MCP array (PDF 424 kb)

Supplementary Methods (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SY., Borbat, P., Gonzalez-Bonet, G. et al. Reconstruction of the chemotaxis receptor–kinase assembly. Nat Struct Mol Biol 13, 400–407 (2006). https://doi.org/10.1038/nsmb1085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing