Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The electrostatic character of the ribosomal surface enables extraordinarily rapid target location by ribotoxins

Abstract

α-sarcin ribotoxins comprise a unique family of ribonucleases that cripple the ribosome by catalyzing endoribonucleolytic cleavage of ribosomal RNA at a specific location in the sarcin/ricin loop (SRL). The SRL structure alone is cleaved site-specifically by the ribotoxin, but the ribosomal context enhances the reaction rate by several orders of magnitude. We show that, for the α-sarcin–like ribotoxin restrictocin, this catalytic advantage arises from favorable electrostatic interactions with the ribosome. Restrictocin binds at many sites on the ribosomal surface and under certain conditions cleaves the SRL with a second-order rate constant of 1.7 × 1010 M−1 s−1, a value that matches the predicted frequency of random restrictocin-ribosome encounters. The results suggest a mechanism of target location whereby restrictocin encounters ribosomes randomly and diffuses within the ribosomal electrostatic field to the SRL. These studies show a role for electrostatics in protein-ribosome recognition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coulomb force dominates the interaction between restrictocin and oligonucleotides.
Figure 2: Ribosomes as substrates for restrictocin.
Figure 3: Mutation of cationic surface residues of restrictocin mitigates the ribosome advantage over SRL.
Figure 4: Monitoring restrictocin activity at dilute ribosome concentrations.
Figure 5: Side view of the 2.4 Å crystal structure of the large ribosomal subunit41,42.
Figure 6: Titration of the restrictocin-binding sites on the ribosomal surface.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jennings, J.C., Olson, B.H., Roga, V., Junek, A.J. & Schuurmans, D.M. Alpha sarcin, a new antitumor agent. II. Fermentation and antitumor spectrum. Appl. Microbiol. 13, 322–326 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Turnay, J., Olmo, N., Jimenez, A., Lizarbe, M.A. & Gavilanes, J.G. Kinetic study of the cytotoxic effect of alpha-sarcin, a ribosome inactivating protein from Aspergillus giganteus, on tumour cell lines: protein biosynthesis inhibition and cell binding. Mol. Cell. Biochem. 122, 39–47 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Wool, I.G. Structure and mechanism of action of the cytotoxic ribonuclease α-sarcin. in Ribonucleases: Structures and Functions (eds. D'Alesio, G. & Riordan, J.F.) 131–162 (Academic Press, New York, 1997).

    Chapter  Google Scholar 

  4. Olmo, N. et al. Cytotoxic mechanism of the ribotoxin alpha-sarcin: induction of cell death via apoptosis. Eur. J. Biochem. 268, 2113–2123 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Martinez-Ruiz, A., Kao, R., Davies, J. & Martinez del Pozo, A. Ribotoxins are a more widespread group of proteins within the filamentous fungi than previously believed. Toxicon 37, 1549–1563 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, X. & Moffat, K. Insights into specificity of cleavage and mechanism of cell entry from the crystal structure of the highly specific Aspergillus ribotoxin, restrictocin. Structure 4, 837–852 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Lacadena, J. et al. Role of histidine-50, glutamic acid-96, and histidine-137 in the ribonucleolytic mechanism of the ribotoxin alpha-sarcin. Proteins 37, 474–484 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Gluck, A. & Wool, I.G. Determination of the 28 S ribosomal RNA identity element (G4319) for alpha-sarcin and the relationship of recognition to the selection of the catalytic site. J. Mol. Biol. 256, 838–848 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, X., Gerczei, T., Glover, L. & Correll, C.C. Crystal structures of restrictocin-inhibitor complexes with implications for RNA recognition and base flipping. Nat. Struct. Biol. 8, 968–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Northrup, S.H. & Erickson, H.P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc. Natl. Acad. Sci. USA 89, 3338–3342 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stroppolo, M.E. et al. Single mutation at the intersubunit interface confers extra efficiency to Cu, Zn superoxide dismutase. FEBS Lett. 483, 17–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Stroppolo, M.E., Falconi, M., Caccuri, A.M. & Desideri, A. Superefficient enzymes. Cell. Mol. Life Sci. 58, 1451–1460 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Gluck, A., Endo, Y. & Wool, I.G. The ribosomal RNA identity elements for ricin and for alpha-sarcin: mutations in the putative CG pair that closes a GAGA tetraloop. Nucleic Acids Res. 22, 321–324 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Macbeth, M.R. & Wool, I.G. Characterization of in vitro and in vivo mutations in non-conserved nucleotides in the ribosomal RNA recognition domain for the ribotoxins ricin and sarcin and the translation elongation factors. J. Mol. Biol. 285, 567–580 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Park, C. & Raines, R.T. Quantitative analysis of the effect of salt concentration on enzymatic catalysis. J. Am. Chem. Soc. 123, 11472–11479 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Day-Storms, J.J., Niranjanakumari, S. & Fierke, C.A. Ionic interactions between PRNA and P protein in Bacillus subtilis RNase P characterized using a magnetocapture-based assay. RNA 10, 1595–1608 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hall, K.B. & Stump, W.T. Interaction of N-terminal domain of U1A protein with an RNA stem/loop. Nucleic Acids Res. 20, 4283–4290 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saecker, R.M. & Record, M.T. Jr. Protein surface salt bridges and paths for DNA wrapping. Curr. Opin. Struct. Biol. 12, 311–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Record, M.T., Jr., Zhang, W. & Anderson, C.F. Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. Adv. Protein Chem. 51, 281–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Record, M.T., Jr., deHaseth, P.L. & Lohman, T.M. Interpretation of monovalent and divalent cation effects on the lac repressor-operator interaction. Biochemistry 16, 4791–4796 (1977).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, S.-w.W. & Honig, B. Monovalent and divalent salt effects on electrostatic free energies defined by the nonlinear poisson-Boltzmann equation: application to DNA binding reactions. J. Phys. Chem. B 101, 9113–9118 (1997).

    Article  CAS  Google Scholar 

  22. Dong, H., Nilsson, L. & Kurland, C.G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J. Mol. Biol. 260, 649–663 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Porse, B.T., Leviev, I., Mankin, A.S. & Garrett, R.A. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J. Mol. Biol. 276, 391–404 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Trylska, J., Konecny, R., Tama, F., Brooks, C.L., III & McCammon, J.A. Ribosome motions modulate electrostatic properties. Biopolymers 74, 423–431 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moore, P.B. & Steitz, T.A. The structural basis of large ribosomal subunit function. Annu. Rev. Biochem. 72, 813–850 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Selzer, T. & Schreiber, G. Predicting the rate enhancement of protein complex formation from the electrostatic energy of interaction. J. Mol. Biol. 287, 409–419 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Selzer, T., Albeck, S. & Schreiber, G. Rational design of faster associating and tighter binding protein complexes. Nat. Struct. Biol. 7, 537–541 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hemsath, L., Dvorsky, R., Fiegen, D., Carlier, M.F. & Ahmadian, M.R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott-Aldrich syndrome proteins. Mol. Cell 20, 313–324 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. von Hippel, P.H. & Berg, O.G. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678 (1989).

    CAS  PubMed  Google Scholar 

  31. Futami, J. et al. Optimum modification for the highest cytotoxicity of cationized ribonuclease. J. Biochem. 132, 223–228 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Vives, E., Richard, J.P., Rispal, C. & Lebleu, B. TAT peptide internalization: seeking the mechanism of entry. Curr. Protein Pept. Sci. 4, 125–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Spedding, G. Isolation and analysis of ribosomes from prokaryotes, eukaryotes, and organelles. in Ribosomes and Protein Synthesis—A Practical Approach (ed. Speddings, G.) 1–29 (Oxford University Press, New York, 1990).

    Google Scholar 

  35. Endo, Y., Huber, P.W. & Wool, I.G. The ribonuclease activity of the cytotoxin alpha-sarcin. The characteristics of the enzymatic activity of alpha-sarcin with ribosomes and ribonucleic acids as substrates. J. Biol. Chem. 258, 2662–2667 (1983).

    CAS  PubMed  Google Scholar 

  36. Demeler, B. UltraScan: a comprehensive data analysis software package for analytical ultracentrifugation experiments. in Modern Analytical Ultracentrifugation: Techniques and Methods (eds. Scott, D., Harding, S.E. & Rowe, A.J.) 210–229 (Royal Society of Chemistry, Cambridge, 2005).

    Google Scholar 

  37. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendes, P. & Kell, D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14, 869–883 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1991).

    Article  Google Scholar 

  40. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel, V.B., Cunningham, C.C. & Hantgan, R.R. Physiochemical properties of rat liver mitochondrial ribosomes. J. Biol. Chem. 276, 6739–6746 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Dube, P. et al. The 80S rat liver ribosome at 25 Å resolution by electron cryomicroscopy and angular reconstitution. Structure 6, 389–399 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Y.-L. Chan for valuable advice and discussion, J. Olvera for excellent technical assistance and M. Yousef for the help at the Biophysical Core Facility at the University of Chicago. We thank I.G. Wool, P.B. Moore and members of the Piccirilli laboratory for helpful comments on the manuscript. This work was supported by grants from the Burroughs Wellcome Fund to A.V.K., from the Howard Hughes Medical Institute to J.A.P. and from the US National Institutes of Health (GM59782) to C.C.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph A Piccirilli or Carl C Correll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cleavage of the rat SRL by restrictocin (PDF 140 kb)

Supplementary Fig. 2

Inhibition of ribotoxin-mediated RNA cleavage by salt (PDF 132 kb)

Supplementary Fig. 3

Km for SRL cleavage by restrictocin equals the binding constant Kd (PDF 82 kb)

Supplementary Fig. 4

Cleavage of ribosomes and total rRNA by restrictocin (PDF 615 kb)

Supplementary Fig. 5

Kinetic characterization of the 3/D triple mutant (PDF 205 kb)

Supplementary Table 1

Effect of buffer composition on the rate of SRL cleavage by restrictocin (PDF 51 kb)

Supplementary Table 2

Sequences of the RNA and DNA oligonucleotides used (PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korennykh, A., Piccirilli, J. & Correll, C. The electrostatic character of the ribosomal surface enables extraordinarily rapid target location by ribotoxins. Nat Struct Mol Biol 13, 436–443 (2006). https://doi.org/10.1038/nsmb1082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing