Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity

Abstract

O-GlcNAc is an abundant post-translational modification of serine and threonine residues of nucleocytoplasmic proteins. This modification, found only within higher eukaryotes, is a dynamic modification that is often reciprocal to phosphorylation. In a manner analogous to phosphatases, a glycoside hydrolase termed O-GlcNAcase cleaves O-GlcNAc from modified proteins. Enzymes with high sequence similarity to human O-GlcNAcase are also found in human pathogens and symbionts. We report the three-dimensional structure of O-GlcNAcase from the human gut symbiont Bacteroides thetaiotaomicron both in its native form and in complex with a mimic of the reaction intermediate. Mutagenesis and kinetics studies show that the bacterial enzyme, very similarly to its human counterpart, operates via an unusual 'substrate-assisted' catalytic mechanism, which will inform the rational design of enzyme inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the O-GlcNAc modification.
Figure 2: Three-dimensional structure of B. thetaiotaomicron GH84.
Figure 3: BtGH84 cleaves O-GlcNAc from post-translationally modified eukaryotic proteins.
Figure 4: pH-activity profile of BtGH84 and Taft-like analysis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Torres, C.R. & Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984).

    CAS  PubMed  Google Scholar 

  2. Kamemura, K., Hayes, B.K., Comer, F.I. & Hart, G.W. Dynamic interplay between O-glycosylation and O-phosphorylation of nucleocytoplasmic proteins: alternative glycosylation/phosphorylation of THR-58, a known mutational hot spot of c-Myc in lymphomas, is regulated by mitogens. J. Biol. Chem. 277, 19229–19235 (2002).

    Article  CAS  Google Scholar 

  3. Cheng, X., Cole, R.N., Zaia, J. & Hart, G.W. Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39, 11609–11620 (2000).

    Article  CAS  Google Scholar 

  4. Lefebvre, T. et al. Effect of okadaic acid on O-linked N-acetylglucosamine levels in a neuroblastoma cell line. Biochim. Biophys. Acta 1472, 71–81 (1999).

    Article  CAS  Google Scholar 

  5. Chou, C.F., Smith, A.J. & Omary, M.B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J. Biol. Chem. 267, 3901–3906 (1992).

    CAS  PubMed  Google Scholar 

  6. Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).

    Article  CAS  Google Scholar 

  7. Dong, D.L., Xu, Z.S., Hart, G.W. & Cleveland, D.W. Cytoplasmic O-GlcNAc modification of the head domain and the KSP repeat motif of the neurofilament protein neurofilament-H. J. Biol. Chem. 271, 20845–20852 (1996).

    Article  CAS  Google Scholar 

  8. Jackson, S.P. & Tjian, R. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55, 125–133 (1988).

    Article  CAS  Google Scholar 

  9. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    Article  CAS  Google Scholar 

  10. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  Google Scholar 

  11. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  Google Scholar 

  12. Dong, D.L. & Hart, G.W. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19321–19330 (1994).

    CAS  PubMed  Google Scholar 

  13. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  Google Scholar 

  14. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735–5739 (2000).

    Article  CAS  Google Scholar 

  15. Lehman, D.M. et al. A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-D glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes 54, 1214–1221 (2005).

    Article  CAS  Google Scholar 

  16. Vosseller, K., Wells, L., Lane, M.D. & Hart, G.W. Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3–L1 adipocytes. Proc. Natl. Acad. Sci. USA 99, 5313–5318 (2002).

    Article  CAS  Google Scholar 

  17. Jinek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Nat. Struct. Mol. Biol. 11, 1001–1007 (2004).

    Article  CAS  Google Scholar 

  18. Zachara, N.E. et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).

    Article  CAS  Google Scholar 

  19. Toleman, C., Paterson, A.J., Whisenhunt, T.R. & Kudlow, J.E. Characterization of the HAT domain of a bifunctional protein with activatable O-GlcNAcase and HAT activities. J. Biol. Chem. 279, 53665–53673 (2004).

    Article  CAS  Google Scholar 

  20. Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280, 309–316 (1991).

    Article  CAS  Google Scholar 

  21. Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    Article  CAS  Google Scholar 

  22. Knapp, S. et al. NAG-thiazoline, an N-acetyl-β-hexosaminidase inhibitor that implicates acetamido participation. J. Am. Chem. Soc. 118, 6804–6805 (1996).

    Article  CAS  Google Scholar 

  23. Mohan, H. & Vasella, A. An improved synthesis of 2-acetamido-2-deoxy-D-gluconohydroximolactone (PUGNAc), a strong inhibitor of beta-N-acetylglucosaminidases. Helv. Chim. Acta 83, 114–118 (2000).

    Article  CAS  Google Scholar 

  24. Mark, B.L. et al. Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease. J. Mol. Biol. 327, 1093–1109 (2003).

    Article  CAS  Google Scholar 

  25. Mark, B.L. et al. Crystallographic evidence for substrate-assisted catalysis in a bacterial beta-hexosaminidase. J. Biol. Chem. 276, 10330–10337 (2001).

    Article  CAS  Google Scholar 

  26. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  27. Newstead, S.L., Watson, J.N., Bennet, A.J. & Taylor, G. Galactose recognition by the carbohydrate-binding module of a bacterial sialidase. Acta Crystallogr. D Biol. Crystallogr. 61, 1483–1491 (2005).

    Article  Google Scholar 

  28. Sonnenburg, J.L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  Google Scholar 

  29. Macauley, M.S., Whitworth, G.E., Debowski, A.W., Chin, D. & Vocadlo, D.J. O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors. J. Biol. Chem. 280, 25313–25322 (2005).

    Article  CAS  Google Scholar 

  30. Macauley, M.S., Stubbs, K.A. & Vocadlo, D.J. O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. J. Am. Chem. Soc. 127, 17202–17203 (2005).

    Article  CAS  Google Scholar 

  31. Vocadlo, D.J., Davies, G.J., Laine, R. & Withers, S.G. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412, 835–838 (2001).

    Article  CAS  Google Scholar 

  32. Terwisscha van Scheltinga, A.C. et al. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34, 15619–15623 (1995).

    Article  CAS  Google Scholar 

  33. Tews, I. et al. Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nat. Struct. Biol. 3, 638–648 (1996).

    Article  CAS  Google Scholar 

  34. Markovic-Housley, Z. et al. Crystal structure of hyaluronidase, a major allergen of bee venom. Struct. Fold. Des. 8, 1025–1035 (2000).

    Article  CAS  Google Scholar 

  35. Çetinbas, N., Macauley, M.S., Stubbs, K.A., Drapala, R. & Vocadlo, D.J. Identification of Asp174 and Asp175 as the key catalytic residues of human O-GlcNAcase by functional analysis of site-directed mutants. Biochemistry, 45, 3835–3844 (2006).

    Article  Google Scholar 

  36. Stubbs, K.A., Zhang, N. & Vocadlo, D.J. A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase. Org. Biomol. Chem. 4, 839–845 (2006).

    Article  CAS  Google Scholar 

  37. Roos, M.D. et al. Streptozotocin, an analog of N-acetylglucosamine, blocks the removal of O-GlcNAc from intracellular proteins. Proc. Assoc. Am. Physicians 110, 422–432 (1998).

    CAS  PubMed  Google Scholar 

  38. Bolzan, A.D. & Bianchi, M.S. Genotoxicity of streptozotocin. Mutat. Res. 512, 121–134 (2002).

    Article  CAS  Google Scholar 

  39. Rao, F.V. et al. Structural insights into the mechanism and inhibition of eukaryotic O-GlcNAc hydrolysis. EMBO J. (in the press).

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  41. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  43. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot. model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  45. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  46. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced colouring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  47. Wells, L. et al. Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase. J. Biol. Chem. 277, 1755–1761 (2002).

    Article  Google Scholar 

  48. Hansch, C. & Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology (Wiley, New York, 1979).

    Google Scholar 

Download references

Acknowledgements

R.J.D. thanks the Biotechnology and Biological Sciences Research Council (BBSRC) for a PhD fellowship. This work was supported by grants from the BBSRC to G.J.D. and from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Protein Engineering Network of Centres of Excellence to D.J.V. D.J.V. is supported as a Tier II Canada Research Chair in Chemical Glycobiology. M.S.M. thanks NSERC and the Michael Smith Foundation for Health Research for fellowships. We also thank A.J. Bennet for access to equipment. This work was funded by the BBSRC, the Royal Society of the UK and the NSERC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David J Vocadlo or Gideon J Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Inhibitors used in the study of BtGH84 and key interactions within the enzyme active site (PDF 197 kb)

Supplementary Figure 2

Kinetic analyses of site-directed mutants of BtGH84 (PDF 124 kb)

Supplementary Figure 3

Electrostatic potential surface figure of the active center environment of BtGH84 (PDF 123 kb)

Supplementary Table 1 (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennis, R., Taylor, E., Macauley, M. et al. Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity. Nat Struct Mol Biol 13, 365–371 (2006). https://doi.org/10.1038/nsmb1079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1079

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing