Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid ribosomal translocation depends on the conserved 18-55 base pair in P-site transfer RNA

Abstract

The L shape of tRNA is stabilized by the 'tertiary core' region, which contains base-pairing interactions between the D and T loops. Distortions of the L shape accompany tRNA movement across the ribosomal surface. Here, using single-turnover rapid kinetics assays, we determine the effects of mutations within the tertiary core of P site–bound tRNAfMet on three measures of the rate of translocation, the part of the elongation cycle involving the most extensive tRNA movement. Mutations in the strictly conserved G18·U55 base pair result in as much as an 80-fold decrease in the rate of translocation, demonstrating the importance of the 18-55 interaction for rapid translocation. This implicates the core region as a locus for functionally important dynamic interactions with the ribosome and leads to the proposal that translocation of ribosome-bound tRNAs may be sequential rather than concerted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of E. coli tRNAfMet bound to Met-RS (PDB entry 2FMT).
Figure 2: Time course of EF-G–dependent translocation.
Figure 3: Interaction sites between the ribosome and the tertiary core region of tRNA8 (PDB entries 1GIX and 1GIY).
Figure 4

Similar content being viewed by others

References

  1. Robertus, J.D. et al. Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551 (1974).

    Article  CAS  Google Scholar 

  2. Kim, S.H. et al. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440 (1974).

    Article  CAS  Google Scholar 

  3. Zagryadskaya, E.I., Kotlova, N. & Steinberg, S.V. Key elements in maintenance of the tRNA L-shape. J. Mol. Biol. 340, 435–444 (2004).

    Article  CAS  Google Scholar 

  4. Davanloo, P., Sprinzl, M., Watanabe, K., Albani, M. & Kersten, H. Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance. Nucleic Acids Res. 6, 1571–1581 (1979).

    Article  CAS  Google Scholar 

  5. Sampson, J.R. & Uhlenbeck, O.C. Biochemical and physical characterization of an unmodified yeast phenylalanine transfer RNA transcribed in vitro. Proc. Natl. Acad. Sci. USA 85, 1033–1037 (1988).

    Article  CAS  Google Scholar 

  6. Nobles, K.N., Yarian, C.S., Liu, G., Guenther, R.H. & Agris, R.F. Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding. Nucleic Acids Res. 30, 4751–4760 (2002).

    Article  CAS  Google Scholar 

  7. Frank, J. et al. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett. 579, 959–962 (2005).

    Article  CAS  Google Scholar 

  8. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 Å resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  9. Nekhai, S.A., Parfenov, D.V. & Saminsky, E.M. tRNA regions which contact with the ribosomal poly(U)-programmed P-site. Biochim. Biophys. Acta 1218, 481–484 (1994).

    Article  CAS  Google Scholar 

  10. Herr, A.J., Atkins, J.F. & Gesteland, R.F. Mutations which alter the elbow region of tRNA2Gly reduce T4 gene 60 translational bypassing efficiency. EMBO J. 18, 2886–2896 (1999).

    Article  CAS  Google Scholar 

  11. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  Google Scholar 

  12. Katunin, V.I., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41, 12806–12812 (2002).

    Article  CAS  Google Scholar 

  13. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  Google Scholar 

  14. Katunin, V.I., Muth, G.W., Strobel, S.A., Wintermeyer, W. & Rodnina, M.V. Important contribution to catalysis of peptide bond formation by a single ionzing group within the ribosome. Mol. Cell 10, 339–346 (2002).

    Article  CAS  Google Scholar 

  15. Doyon, F.R., Zagryadskaya, E.I., Chen, J. & Steinberg, S.V. Specific and non-specific purine trap in the T-loop of normal and suppressor tRNAs. J. Mol. Biol. 343, 55–69 (2004).

    Article  CAS  Google Scholar 

  16. de Smit, M.H. et al. Structural variation and functional importance of a D-loop-T-loop interaction in valine-accepting tRNA-like structures of plant viral RNAs. Nucleic Acids Res. 30, 4232–4240 (2002).

    Article  CAS  Google Scholar 

  17. Peterson, E.T., Blank, J., Sprinzl, M. & Uhlenbeck, O.C. Selection for active E. coli tRNA(Phe) variants from a randomized library using two proteins. EMBO J. 12, 2959–2967 (1993).

    Article  CAS  Google Scholar 

  18. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  19. Seo, H.S. et al. EF-G-dependent GTPase on the ribosome. Conformational change and fusidic acid inhibition. Biochemistry, published online 1 February 2006 (10.1021/bi0516677).

  20. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  21. Lill, R., Robertson, J.M. & Wintermeyer, W. Binding of the 3′ terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation. EMBO J. 8, 3933–3938 (1989).

    Article  CAS  Google Scholar 

  22. Feinberg, J.S. & Joseph, S. Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation. Proc. Natl. Acad. Sci. USA 98, 11120–11125 (2001).

    Article  CAS  Google Scholar 

  23. Du, X. & Wang, E.D. Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing. Nucleic Acids Res. 31, 2865–2872 (2003).

    Article  CAS  Google Scholar 

  24. Sampson, J.R., DiRenzo, A.B., Behlen, S.L. & Uhlenbeck, O.C. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry 29, 2523–2532 (1990).

    Article  CAS  Google Scholar 

  25. Noller, H.F., Yusupov, M.M., Yusupova, G.Z., Baucom, A. & Cate, J.H. Translocation of tRNA during protein synthesis. FEBS Lett. 514, 11–16 (2002).

    Article  CAS  Google Scholar 

  26. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon-anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  27. Rodnina, M.V. & Wintermeyer, W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc. Natl. Acad. Sci. USA 92, 1945–1949 (1995).

    Article  CAS  Google Scholar 

  28. Rodnina, M.V., Semenkov, Y.P. & Wintermeyer, W. Purification of fMet-tRNA(fMet) by fast protein liquid chromatography. Anal. Biochem. 219, 380–381 (1994).

    Article  CAS  Google Scholar 

  29. Semenkov, Y., Makarov, E. & Kivillov, S. Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes. Biopolym. Cell 1, 183–193 (1985).

    Article  CAS  Google Scholar 

  30. Wintermeyer, W. & Zachau, H.G. Replacement of odd bases in tRNA by fluorescent dyes. Methods Enzymol. 29, 667–673 (1974).

    Article  CAS  Google Scholar 

  31. Hou, Y.M., Westhof, E. & Giege, R. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc. Natl. Acad. Sci. USA 90, 6776–6780 (1993).

    Article  CAS  Google Scholar 

  32. Ramamurthy, V., Swann, S.L., Paulson, J.L., Spedaliere, C.J. & Mueller, E.G. Critical aspartic acid residues in pseudouridine synthases. J. Biol. Chem. 274, 22225–22230 (1999).

    Article  CAS  Google Scholar 

  33. Bradford, M.M. A rapid and sensitive method for the quantitiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  34. Brune, M., Hunter, J.L., Corrie, J.E. & Webb, M.R. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry 33, 8262–8271 (1994).

    Article  CAS  Google Scholar 

  35. Wahler, B.E. & Wollenberger, A. Determination of orthophosphate in the presence of phosphate compounds with an affinity for acids and molybdate. Biochem. Z. 329, 508–520 (1958).

    CAS  PubMed  Google Scholar 

  36. Bocchetta, M., Xiong, L., Shah, S. & Mankin, A.S. Interactions between 23S rRNA and tRNA in the ribosomal E site. RNA 7, 54–63 (2001).

    Article  CAS  Google Scholar 

  37. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7, 1027–1031 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants to B.S.C. (GM071014) and Y.M.H. (GM56662). C.M.Z. is supported by a postdoctoral fellowship from the American Heart Association, Pennsylvania-Delaware Affiliate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry S Cooperman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, D., Kirillov, S., Zhang, CM. et al. Rapid ribosomal translocation depends on the conserved 18-55 base pair in P-site transfer RNA. Nat Struct Mol Biol 13, 354–359 (2006). https://doi.org/10.1038/nsmb1074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing