Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for DNA recognition and processing by UvrB

Abstract

DNA-damage recognition in the nucleotide excision repair (NER) cascade is a complex process, operating on a wide variety of damages. UvrB is the central component in prokaryotic NER, directly involved in DNA-damage recognition and guiding the DNA through repair synthesis. We report the first structure of a UvrB–double-stranded DNA complex, providing insights into the mechanism by which UvrB binds DNA, leading to formation of the preincision complex. One DNA strand, containing a 3′ overhang, threads behind a β-hairpin motif of UvrB, indicating that this motif inserts between the strands of the double helix, thereby locking down either the damaged or undamaged strand. The nucleotide directly behind the β-hairpin is flipped out and inserted into a small, highly conserved pocket in UvrB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The UvrB–DNA complex and selected electron density.
Figure 2: Interactions between UvrB and the DNA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Friedberg, E.C., Walker, G.C. & Siede, W. DNA repair and mutagenesis. (ASM Press, Washington, D.C., 1995).

  2. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).

    Article  CAS  Google Scholar 

  3. Lloyd, R.S. & Van Houten, B . DNA damage recognition. in DNA Repair Mechanisms: Impact on Human Diseases and Cancer (ed. Vos, J.-M.) 25–66 (R.G. Landes Company, Biomedical Publishers, Austin, Texas, 1995).

    Google Scholar 

  4. Goosen, N. & Moolenaar, G.F. Role of ATP hydrolysis by UvrA and UvrB during nucleotide excision repair. Res. Microbiol. 152, 401–409 (2001).

    Article  CAS  Google Scholar 

  5. Van Houten, B. Nucleotide excision repair in Escherichia coli. Microbiol. Rev. 54, 18–51 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Theis, K. et al. The nucleotide excision repair protein UvrB, a helicase-like enzyme with a catch. Mutat. Res. 460, 277–300 (2000).

    Article  CAS  Google Scholar 

  7. Verhoeven, E.E., Wyman, C., Moolenaar, G.F. & Goosen, N. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J. 21, 4196–4205 (2002).

    Article  CAS  Google Scholar 

  8. Orren, D.K. & Sancar, A. Formation and enzymatic properties of the UvrB-DNA complex. J. Biol. Chem. 265, 15796–15803 (1990).

    CAS  PubMed  Google Scholar 

  9. Skorvaga, M., Theis, K., Mandavilli, B.S., Kisker, C. & Van Houten, B. The beta-hairpin motif of UvrB is essential for DNA binding, damage processing, and UvrC-mediated incisions. J. Biol. Chem. 277, 1553–1559 (2002).

    Article  CAS  Google Scholar 

  10. Lin, J.-J. & Sancar, A. Active site of (A)BC excinuclease: I. Evidence for 5′ incision by UvrC through a catalytic site involving Asp399, Asp438, and His538 residues. J. Biol. Chem. 267, 17688–17692 (1992).

    CAS  PubMed  Google Scholar 

  11. Sancar, A. & Rupp, W.D. A novel repair enzyme: UvrABC excision nuclease of Escherichia coli cuts a DNA strand on both sides of the damaged region. Cell 33, 249–260 (1983).

    Article  CAS  Google Scholar 

  12. Verhoeven, E.E., van Kesteren, M., Moolenaar, G.F., Visse, R. & Goosen, N. Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J. Biol. Chem. 275, 5120–5123 (2000).

    Article  CAS  Google Scholar 

  13. Caron, P.R., Kushner, S.R. & Grossman, L. Involvement of helicase-II (UvrD gene product) and DNA Polymerase-I in excision mediated by the UvrABC protein complex. Proc. Natl. Acad. Sci. USA 82, 4925–4929 (1985).

    Article  CAS  Google Scholar 

  14. Husain, I., Houten, B.V., Thomas, D.C., Abdel-Monem, M. & Sancar, A. Effect of DNA polymerase I and DNA helicase II on the turnover rate of UvrABC excision nuclease. Proc. Natl. Acad. Sci. USA 82, 6774–6778 (1985).

    Article  CAS  Google Scholar 

  15. Machius, M., Henry, L., Palnitkar, M. & Deisenhofer, J. Crystal structure of the DNA nucleotide excision repair enzyme UvrB from Thermus thermophilus. Proc. Natl. Acad. Sci. USA 96, 11717–11722 (1999).

    Article  CAS  Google Scholar 

  16. Nakagawa, N. et al. Crystal structure of Thermus thermophilus HB8 UvrB protein, a key enzyme of nucleotide excision repair. J. Biochem. 126, 986–990 (1999).

    Article  CAS  Google Scholar 

  17. Theis, K., Chen, P.J., Skorvaga, M., Houten, B.V. & Kisker, C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 18, 6899–6907 (1999).

    Article  CAS  Google Scholar 

  18. Truglio, J.J. et al. Interactions between UvrA and UvrB: the role of UvrB's domain 2 in nucleotide excision repair. EMBO J. 23, 2498–2509 (2004).

    Article  CAS  Google Scholar 

  19. Hsu, D.S., Kim, S.T., Sun, Q. & Sancar, A. Structure and function of the UvrB protein. J. Biol. Chem. 270, 8319–8327 (1995).

    Article  CAS  Google Scholar 

  20. Gordienko, I. & Rupp, W.D. The limited strand-separating activity of the UvrAB protein complex and its role in the recognition of DNA damage. EMBO J. 16, 889–895 (1997).

    Article  CAS  Google Scholar 

  21. Visse, R., King, A., Moolenaar, G.F., Goosen, N. & van de Putte, P. Protein-DNA interactions and alterations in the DNA structure upon UvrB-DNA preincision complex formation during nucleotide excision repair in Escherichia coli. Biochemistry 33, 9881–9888 (1994).

    Article  CAS  Google Scholar 

  22. Zou, Y. & Van Houten, B. Strand opening by the UvrA2B complex allows dynamic recognition of DNA damage. EMBO J. 18, 4889–4901 (1999).

    Article  CAS  Google Scholar 

  23. Skorvaga, M. et al. Identification of residues within UvrB that are important for efficient DNA binding and damage processing. J. Biol. Chem. 279, 51574–51580 (2004).

    Article  CAS  Google Scholar 

  24. DellaVecchia, M.J. et al. Analyzing the handoff of DNA from UvrA to UvrB utilizing DNA-protein photoaffinity labeling. J. Biol. Chem. 279, 45245–45256 (2004).

    Article  CAS  Google Scholar 

  25. Moolenaar, G.F., Hoglund, L. & Goosen, N. Clue to damage recognition by UvrB: residues in the beta-hairpin structure prevent binding to non-damaged DNA. EMBO J. 20, 6140–6149 (2001).

    Article  CAS  Google Scholar 

  26. Moolenaar, G.F., Schut, M. & Goosen, N. Binding of the UvrB dimer to non-damaged and damaged DNA: residues Y92 and Y93 influence the stability of both subunits. DNA Repair (Amst.) 4, 699–713 (2005).

    Article  CAS  Google Scholar 

  27. Zou, Y. et al. DNA damage recognition of mutated forms of UvrB proteins in nucleotide excision repair. Biochemistry 43, 4196–4205 (2004).

    Article  CAS  Google Scholar 

  28. Sancar, A., Franklin, K.A. & Sancar, G.B. Escherichia coli DNA photolyase stimulates uvrABC excision nuclease in vitro. Proc. Natl. Acad. Sci. USA 81, 7397–7401 (1984).

    Article  CAS  Google Scholar 

  29. Mees, A. et al. Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair. Science 306, 1789–1793 (2004).

    Article  CAS  Google Scholar 

  30. Malta, E., Moolenaar, G.F. & Goosen, N. Base flipping in nucleotide excision repair. J. Biol. Chem. 281, 2184–2194 (2006).

    Article  CAS  Google Scholar 

  31. Zou, Y., Walker, R., Bassett, H., Geacintov, N.E. & Houten, B.V. Formation of DNA repair intermediates and incision by the ATP-dependent UvrB-UvrC endonuclease. J. Biol. Chem. 272, 4820–4827 (1997).

    Article  CAS  Google Scholar 

  32. Moolenaar, G.F. et al. The effect of the DNA flanking the lesion on formation of the UvrB-DNA preincision complex. J. Biol. Chem. 275, 8038–8043 (2000).

    Article  CAS  Google Scholar 

  33. Shi, Q., Thresher, R., Sancar, A. & Griffith, J. Electron microscopic study of (A)BC excinuclease—DNA is sharply bent in the UvrB-DNA complex. J. Mol. Biol. 226, 425–432 (1992).

    Article  CAS  Google Scholar 

  34. Lin, J.J., Phillips, A.M., Hearst, J.E. & Sancar, A. Active site of (A)BC excinuclease: II. Binding, bending and catalysis mutants of UvrB reveal a direct role in 3′ and an indirect role in 5′ incision. J. Biol. Chem. 267, 17693–17700 (1992).

    CAS  PubMed  Google Scholar 

  35. Verhoeven, E.E., Wyman, C., Moolenaar, G.F., Hoeijmakers, J.H. & Goosen, N. Architecture of nucleotide excision repair complexes: DNA is wrapped by UvrB before and after damage recognition. EMBO J. 20, 601–611 (2001).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  38. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  39. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK—a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants to C.K. from the NIH (GM 070873) and from the Pew Scholars Program in the Biomedical Sciences, and in part by the Intramural Research Program of the National Institute of Environmental Health Sciences, NIH (B.V.H.). The National Synchrotron Light Source in Brookhaven is supported by the US Department of Energy and the NIH, and beamline X26C is supported in part by the State University of New York at Stony Brook and its Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Kisker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

UvrB Y95A EMSA and incision data (PDF 580 kb)

Supplementary Table 1

Contacts between UvrB and the DNA (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Truglio, J., Karakas, E., Rhau, B. et al. Structural basis for DNA recognition and processing by UvrB. Nat Struct Mol Biol 13, 360–364 (2006). https://doi.org/10.1038/nsmb1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing