Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome

Abstract

Chromatin-remodeling complexes regulate access to nucleosomal DNA by mobilizing nucleosomes in an ATP-dependent manner. In this study, we find that chromatin remodeling by SWI/SNF and ISW2 involves DNA translocation inside nucleosomes two helical turns from the dyad axis at superhelical location-2. DNA translocation at this internal position does not require the propagation of a DNA twist from the site of translocation to the entry/exit sites for nucleosome movement. Nucleosomes are moved in 9- to 11- or 50-base-pair increments by ISW2 or SWI/SNF, respectively, presumably through the formation of DNA loops on the nucleosome surface. Remodeling by ISW2 but not SWI/SNF requires DNA torsional strain near the site of translocation, which may work in conjunction with conformational changes of ISW2 to promote nucleosome movement on DNA. The difference in step size of nucleosome movement by SWI/SNF and ISW2 demonstrates how SWI/SNF may be more disruptive to nucleosome structure than ISW2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Movement of a DNA gap to 23 bp from the dyad axis interferes with nucleosomal mobilization by ISW2.
Figure 2: Single-nucleotide gaps and nicks in DNA near the dyad axis of the nucleosome interfered with nucleosome mobilization by ISW2.
Figure 3: DNA gaps block SWI/SNF remodeling when positioned 15–33 bp from the dyad.
Figure 4: Single-nucleotide gaps 18–33 bp from the dyad, but not DNA nicks, interfered with SWI/SNF remodeling in a strand-specific manner.
Figure 5: ISW2 moved nucleosomes in 9- and 11-bp increments, whereas SWI/SNF moved nucleosomes in 50-bp increments.
Figure 6: Models for nucleosome mobilization by ISW2 and SWI/SNF involving a DNA translocation-initiation step within the nucleosome.

Similar content being viewed by others

References

  1. Pazin, M.J. & Kadonaga, J.T. SWI2/SNF2 and related proteins: ATP-driven motors that disrupt protein-DNA interactions? Cell 88, 737–740 (1997).

    Article  CAS  Google Scholar 

  2. Lusser, A. & Kadonaga, J.T. Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25, 1192–1200 (2003).

    Article  CAS  Google Scholar 

  3. Kassabov, S.R., Henry, N.M., Zofall, M., Tsukiyama, T. & Bartholomew, B. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol. Cell. Biol. 22, 7524–7534 (2002).

    Article  CAS  Google Scholar 

  4. Zofall, M., Persinger, J. & Bartholomew, B. Functional role of extranucleosomal DNA and the entry site of the nucleosome in chromatin remodeling by ISW2. Mol. Cell. Biol. 24, 10047–10057 (2004).

    Article  CAS  Google Scholar 

  5. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  6. Lorch, Y., Zhang, M. & Kornberg, R.D. RSC unravels the nucleosome. Mol. Cell 7, 89–95 (2001).

    Article  CAS  Google Scholar 

  7. Flaus, A. & Owen-Hughes, T. Mechanisms for nucleosome mobilization. Biopolymers 68, 563–578 (2003).

    Article  CAS  Google Scholar 

  8. Logie, C., Tse, C., Hansen, J.C. & Peterson, C.L. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes. Biochemistry 38, 2514–2522 (1999).

    Article  CAS  Google Scholar 

  9. Imbalzano, A.N., Kwon, H., Green, M.R. & Kingston, R.E. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481–485 (1994).

    Article  CAS  Google Scholar 

  10. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  11. Schiessel, H., Widom, J., Bruinsma, R.F. & Gelbart, W.M. Polymer reptation and nucleosome repositioning. Phys. Rev. Lett. 86, 4414–4417 (2001).

    Article  CAS  Google Scholar 

  12. Langst, G. & Becker, P.B. Nucleosome mobilization and positioning by ISWI-containing chromatin-remodeling factors. J. Cell Sci. 114, 2561–2568 (2001).

    CAS  PubMed  Google Scholar 

  13. van Holde, K. & Yager, T. Models for chromatin remodeling: a critical comparison. Biochem. Cell Biol. 81, 169–172 (2003).

    Article  CAS  Google Scholar 

  14. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev. 16, 2120–2134 (2002).

    Article  CAS  Google Scholar 

  15. Langst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  CAS  Google Scholar 

  16. Aoyagi, S. & Hayes, J.J. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism. Mol. Cell. Biol. 22, 7484–7490 (2002).

    Article  CAS  Google Scholar 

  17. Lorch, Y., Davis, B. & Kornberg, R.D. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102, 1329–1332 (2005).

    Article  CAS  Google Scholar 

  18. Havas, K., Whitehouse, I. & Owen-Hughes, T. ATP-dependent chromatin remodeling activities. Cell. Mol. Life Sci. 58, 673–682 (2001).

    Article  CAS  Google Scholar 

  19. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).

    Article  CAS  Google Scholar 

  20. Narlikar, G.J., Phelan, M.L. & Kingston, R.E. Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol. Cell 8, 1219–1230 (2001).

    Article  CAS  Google Scholar 

  21. Kassabov, S.R. & Bartholomew, B. Site-directed histone-DNA contact mapping for analysis of nucleosome dynamics. Methods Enzymol. 375, 193–210 (2004).

    Article  CAS  Google Scholar 

  22. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  Google Scholar 

  23. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  24. Juan, L.J., Utley, R.T., Vignali, M., Bohm, L. & Workman, J.L. H1-mediated repression of transcription factor binding to a stably positioned nucleosome. J. Biol. Chem. 272, 3635–3640 (1997).

    Article  CAS  Google Scholar 

  25. Saha, A., Wittmeyer, J. & Cairns, B.R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nat. Struct. Mol. Biol. 12, 747–755 (2005).

    Article  CAS  Google Scholar 

  26. Becker, P.B. & Horz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  27. Anderson, J.D. & Widom, J. Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  Google Scholar 

  28. Anderson, J.D., Thastrom, A. & Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157 (2002).

    Article  CAS  Google Scholar 

  29. Edayathumangalam, R.S., Weyermann, P., Dervan, P.B., Gottesfeld, J.M. & Luger, K. Nucleosomes in solution exist as a mixture of twist-defect states. J. Mol. Biol. 345, 103–114 (2005).

    Article  CAS  Google Scholar 

  30. Muthurajan, U.M. et al. Structure and dynamics of nucleosomal DNA. Biopolymers 68, 547–556 (2003).

    Article  CAS  Google Scholar 

  31. Flaus, A., Rencurel, C., Ferreira, H., Wiechens, N. & Owen-Hughes, T. Sin mutations alter inherent nucleosome mobility. EMBO J. 23, 343–353 (2004).

    Article  CAS  Google Scholar 

  32. Strohner, R. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat. Struct. Mol. Biol. 12, 683–690 (2005).

    Article  CAS  Google Scholar 

  33. Fan, H.Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  Google Scholar 

  34. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).

    Article  CAS  Google Scholar 

  35. Bruno, M. et al. Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities. Mol. Cell 12, 1599–1606 (2003).

    Article  CAS  Google Scholar 

  36. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  37. Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686–697 (1999).

    Article  CAS  Google Scholar 

  38. Sengupta, S.M. et al. The interactions of yeast SWI/SNF and RSC with the nucleosome before and after chromatin remodeling. J. Biol. Chem. 276, 12636–12644 (2001).

    Article  CAS  Google Scholar 

  39. Sengupta, S.M., Persinger, J., Bartholomew, B. & Peterson, C.L. Use of DNA photoaffinity labeling to study nucleosome remodeling by SWI/SNF. Methods 19, 434–446 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service grants GM 48413 and GM 70864. We would like to thank M. Kagalwala (M.D. Anderson Cancer Center) for ISW2 and B. Zhang (Thomas University) for SWI/SNF and members of B.B.'s laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaine Bartholomew.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zofall, M., Persinger, J., Kassabov, S. et al. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome. Nat Struct Mol Biol 13, 339–346 (2006). https://doi.org/10.1038/nsmb1071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing