Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2


Jun dimerization protein-2 (JDP2) is a component of the AP-1 transcription factor that represses transactivation mediated by the Jun family of proteins. Here, we examine the functional mechanisms of JDP2 and show that it can inhibit p300-mediated acetylation of core histones in vitro and in vivo. Inhibition of histone acetylation requires the N-terminal 35 residues and the DNA-binding region of JDP2. In addition, we demonstrate that JDP2 has histone-chaperone activity in vitro. These results suggest that the sequence-specific DNA-binding protein JDP2 may control transcription via direct regulation of the modification of histones and the assembly of chromatin.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Inhibition by JDP2 of histone acetylation.
Figure 2: Interaction of JDP2 with histones.
Figure 3: Mapping of the histone-binding and HAT-inhibition domains of JDP2.
Figure 4: The histone-chaperone activity of JDP2.
Figure 5: Role of histone-binding and HAT-inhibition activities of JDP2 in transcription and differentiation of F9 cells.


  1. Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  Article  Google Scholar 

  2. Turner, B.M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    CAS  Article  Google Scholar 

  3. Chakravarti, D. et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96, 393–403 (1999).

    CAS  Article  Google Scholar 

  4. Hamamori, Y. et al. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein Twist and adenoviral oncoprotein E1A. Cell 96, 405–413 (1999).

    CAS  Article  Google Scholar 

  5. Weissman, J.D. et al. HIV-1 tat binds TAFII250 and represses TAFII250-dependent transcription of major histocompatibility class I genes. Proc. Natl. Acad. Sci. USA 95, 11601–11606 (1998).

    CAS  Article  Google Scholar 

  6. Creaven, M. et al. Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry 38, 8826–8830 (1999).

    CAS  Article  Google Scholar 

  7. Barlev, N.A. et al. Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol. Cell. Biol. 18, 1349–1358 (1998).

    CAS  Article  Google Scholar 

  8. Kitabayashi, I. et al. Phosphorylation of the adenovirus-associated p300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14, 3496–3509 (1995).

    CAS  Article  Google Scholar 

  9. Ait-Si-Ali, S. et al. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186 (1998).

    CAS  Article  Google Scholar 

  10. Kawasaki, H. et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195–200 (2000).

    CAS  Article  Google Scholar 

  11. Seo, S.B. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the Set oncoprotein. Cell 104, 119–130 (2001).

    CAS  Article  Google Scholar 

  12. Kawase, H. et al. NAP-1 is a functional homologue of TAF-1 that is required for replication and transcription of the adenovirus genome in a chromatin-like structure. Genes Cells 1, 1045–1056 (1996).

    CAS  Article  Google Scholar 

  13. Okuwaki, M. & Nagata, K. Template-activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template. J. Biol. Chem. 273, 34511–34518 (1998).

    CAS  Article  Google Scholar 

  14. Aronheim, A., Zandi, E., Hennemann, H., Elledge, S.J. & Karin, M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell Biol. 17, 3094–3102 (1997).

    CAS  Article  Google Scholar 

  15. Broder, Y., Katz, S. & Aronheim, A. The Ras recruitment system, a novel approach to the study of protein-protein interactions. Curr. Biol. 8, 1121–1124 (1998).

    CAS  Article  Google Scholar 

  16. Jin, C. et al. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett. 489, 34–41 (2001).

    CAS  Article  Google Scholar 

  17. Piu, F., Aronheim, A., Katz, S. & Karin, M. AP-1 repressor protein JDP-2: Inhibition of UV-mediated apoptosis through p53 down-regulation. Mol. Cell Biol. 21, 3012–3024 (2001).

    CAS  Article  Google Scholar 

  18. Jin, C. et al. JDP2, a repressor of AP-1, recruits a histone deacetylase 3 complex to inhibit the retinoic acid-induced differentiation of F9 cells. Mol. Cell Biol. 22, 4815–4826 (2002).

    CAS  Article  Google Scholar 

  19. Ostrovsky, O., Bengal, E. & Aronheim, A. Induction of terminal differentiation by the c-Jun dimerization protein, JDP2, in C2 myoblasts and rhabdomyosarcoma cells. J. Biol. Chem. 277, 40043–40054 (2002).

    CAS  Article  Google Scholar 

  20. Hwang,, H.C. et al. Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis. Proc. Natl. Acad. Sci. USA 99, 11293–11298 (2002).

    CAS  Article  Google Scholar 

  21. Heinrich, R., Livne, E., Ben-Izhak, O. & Aronheim, A. The c-Jun dimerization protein 2 inhibits cell transformation and acts as a tumor suppressor gene. J. Biol. Chem. 279, 5708–5715 (2004).

    CAS  Article  Google Scholar 

  22. Wardell, S.E., Boonyaratanakornkit, V., Adelman, J.S., Aronheim, A. & Edwards, D.P. Jun dimerization protein 2 functions as a progesterone receptor N-terminal domain coactivator. Mol. Cell Biol. 22, 5451–5466 (2002).

    CAS  Article  Google Scholar 

  23. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, R.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    CAS  Article  Google Scholar 

  24. Munakata, T., Adachi, N., Yokoyama, N., Kuzuhara, T. & Horikoshi, M. A human homologue of yeast anti-silencing factor has histone-chaperone activity. Genes Cells 5, 221–233 (2000).

    CAS  Article  Google Scholar 

  25. Umehara, T., Chimura, T., Ichikawa, N. & Horikoshi, M. Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional both in vivo and in vitro. Genes Cells 7, 59–73 (2002).

    CAS  Article  Google Scholar 

  26. Wells, J.A. Systematic mutation analyses of protein-protein interfaces. Methods Enzymol. 202, 390–411 (1991).

    CAS  Article  Google Scholar 

  27. Kitabayashi, I. et al. Transcriptional regulation of the c-jun gene by retinoic acid and E1A during differentiation of F9 cells. EMBO J. 11, 167–175 (1992).

    CAS  Article  Google Scholar 

  28. Makowski, A.M., Dutnall, R.N. & Annunziato, A.T. Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J. Biol. Chem. 276, 43499–43502 (2001).

    CAS  Article  Google Scholar 

  29. Carrozza, M.J., Utley, R.T., Workman, J.L. & Cote, J. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19, 321–329 (2003).

    CAS  Article  Google Scholar 

  30. Dou, Y. et al. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltranferase MOF. Cell 121, 873–885 (2005).

    CAS  Article  Google Scholar 

  31. Taipale, M. et al. hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol. Cell Biol. 25, 6798–6810 (2005).

    CAS  Article  Google Scholar 

  32. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    CAS  Article  Google Scholar 

  33. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    CAS  Article  Google Scholar 

  34. Moggs, J.G. et al. CAF-1-PCNA-mediated chromatin-assembly pathways triggered by sensing DNA damage. Mol. Cell Biol. 20, 1206–1218 (2000).

    CAS  Article  Google Scholar 

  35. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome-assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).

    CAS  Article  Google Scholar 

  36. Brownell, J.E. & Allis, C.D. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc. Natl. Acad. Sci. USA 92, 6364–6368 (1995).

    CAS  Article  Google Scholar 

  37. Lomvardas, S. & Thanos, D. Modification of gene expression programs by altering core promoter chromatin architecture. Cell 110, 261–271 (2002).

    CAS  Article  Google Scholar 

  38. Pfeifer, G.P. & Riggs, A.D. Chromatin differences between active and inactive X chromosomes revealed by genomic footprinting of permeabilized cells using DNase I and ligation-mediated PCR. Genes Dev. 5, 1102–1113 (1991).

    CAS  Article  Google Scholar 

Download references


The authors thank V. Calhoun, K. Itakura, G. Gachelin, H. Ugai, Y. Shinozuka, M. Kimura, J. Svejstrup, K. Ura, J.L. Workman, K. Ikeda and G. Felsenfeld for reagents and/or many helpful discussions, suggestions and critical reading of the manuscript. This work was supported by grants from the RIKEN Bioresource Project and by a grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to K.K.Y.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kazunari K Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Characterization of the HAT assay (PDF 337 kb)

Supplementary Fig. 2

His-JDP2 has INHAT activity (PDF 244 kb)

Supplementary Fig. 3

Interactions between reconstituted mononucleosomes and JDP2 (PDF 225 kb)

Supplementary Fig. 4

The purity and stability of wild-type JDP2 and its derivatives (PDF 98 kb)

Supplementary Methods (PDF 62 kb)

Supplementary Data (PDF 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin, C., Kato, K., Chimura, T. et al. Regulation of histone acetylation and nucleosome assembly by transcription factor JDP2. Nat Struct Mol Biol 13, 331–338 (2006).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing