Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair

Abstract

The function of human XPA protein, a key subunit of the nucleotide excision repair pathway, has been examined with site-directed substitutions in its putative DNA-binding cleft. After screening for repair activity in a host-cell reactivation assay, we analyzed mutants by comparing their affinities for different substrate architectures, including DNA junctions that provide a surrogate for distorted reaction intermediates, and by testing their ability to recruit the downstream endonuclease partner. Normal repair proficiency was retained when XPA mutations abolished only the simple interaction with linear DNA molecules. By contrast, results from a K141E K179E double mutant revealed that excision is crucially dependent on the assembly of XPA protein with a sharp bending angle in the DNA substrate. These findings show how an increased deformability of damaged sites, leading to helical kinks recognized by XPA, contributes to target selectivity in DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of human XPA protein.
Figure 2: Screening for DNA repair activity by host-cell reactivation assay.
Figure 3: DNA-binding properties of XPA mutants.
Figure 4: DNA-binding profiles of XPA tandem mutants.
Figure 5: Photo–cross-linking to the kinked junction region.
Figure 6: Recruitment of XPF–ERCC1 and dimerization.

Similar content being viewed by others

References

  1. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).

    Article  CAS  Google Scholar 

  2. Wood, R.D. Nucleotide excision repair in mammalian cells. J. Biol. Chem. 272, 23465–23468 (1997).

    Article  CAS  Google Scholar 

  3. De Laat, W.L., Jaspers, N.G. & Hoeijmakers, J.H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  CAS  Google Scholar 

  4. Mitchell, D.L. The induction and repair of lesions produced by the photolysis of (6–4) photoproducts in normal and UV-hypersensitive human cells. Mutat. Res. 194, 227–237 (1988).

    CAS  PubMed  Google Scholar 

  5. Reardon, J.T. & Sancar, A. Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev. 17, 2539–2551 (2003).

    Article  CAS  Google Scholar 

  6. Friedberg, E.C., Walker, G.C. & Siede, W. DNA Repair and Mutagenesis (ASM Press, Washington, DC, USA, 1995).

    Google Scholar 

  7. Kraemer, K.H., Lee, M.M. & Scotto, J. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 5, 511–514 (1984).

    Article  CAS  Google Scholar 

  8. States, J.C., McDuffie, E.R., Myrand, S.P., McDowell, M. & Cleaver, J.E. Distribution of mutations in the human xeroderma pigementosum group A gene and their relationships to the functional regions of the DNA damage recognition protein. Hum. Mutat. 12, 103–113 (1998).

    Article  CAS  Google Scholar 

  9. Cleaver, J.E., Thompson, L.H., Richardson, A.S. & States, J.C. A summary of mutations in the UV-sensitive disorders: xeroderma pigementosum, Cockayne syndrome, and trichothiodystrophy. Hum. Mutat. 14, 9–22 (1999).

    Article  CAS  Google Scholar 

  10. Huang, J.C., Svoboda, D., Reardon, J.T. & Sancar, A. Human nucleotide excision nuclease removes thymine dimers from DNA by incising the 22nd phosphodiester bond 5′ and the 6th phosphodiester bond 3′ to the photodimer. Proc. Natl. Acad. Sci. USA 89, 3664–3668 (1992).

    Article  CAS  Google Scholar 

  11. Evans, E., Fellows, J., Coffer, A. & Wood, R.D. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16, 625–638 (1997).

    Article  CAS  Google Scholar 

  12. Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).

    Article  CAS  Google Scholar 

  13. Mellon, I., Spivak, G. & Hanawalt, P.C. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51, 241–249 (1987).

    Article  CAS  Google Scholar 

  14. Friedberg, E.C. DNA damage and repair. Nature 421, 436–440 (2003).

    Article  Google Scholar 

  15. Mu, D. et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270, 2415–2418 (1995).

    Article  CAS  Google Scholar 

  16. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    Article  CAS  Google Scholar 

  17. Araújo, S.J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349–359 (2000).

    PubMed  PubMed Central  Google Scholar 

  18. Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).

    Article  CAS  Google Scholar 

  19. Yang, Z.G., Liu, Y., Mao, L.Y., Zhang, J.-T. & Zou, Y. Dimerization of human XPA and formation of XPA2-RPA protein complex. Biochemistry 41, 13012–13020 (2002).

    Article  CAS  Google Scholar 

  20. He, Z., Henricksen, L.A., Wold, M.S. & Ingles, C.J. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374, 566–569 (1995).

    Article  CAS  Google Scholar 

  21. Li, L., Lu, X., Peterson, C.A. & Legerski, R.J. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol. Cell. Biol. 15, 5396–5402 (1995).

    Article  CAS  Google Scholar 

  22. Park, C.H., Mu, D., Reardon, J.T. & Sancar, A. The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J. Biol. Chem. 270, 4896–4902 (1995).

    Article  CAS  Google Scholar 

  23. Kuraoka, I. et al. Identification of a damaged-DNA binding domain of the XPA protein. Mutat. Res. 362, 87–95 (1996).

    Article  Google Scholar 

  24. Cleaver, J.E. & States, J.C. The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem. J. 328, 1–12 (1997).

    Article  CAS  Google Scholar 

  25. Ikegami, T. et al. Solution structure of the DNA-and RPA-binding domain of the human repair factor XPA. Nat. Struct. Biol. 5, 701–706 (1998).

    Article  CAS  Google Scholar 

  26. Buchko, G.W. et al. DNA-XPA interactions: a 31P NMR and molecular modeling study of dCCAATAACC association with the minimal DNA-binding domain (M98–F219) of the nucleotide excision repair protein XPA. Nucleic Acids Res. 29, 2635–2643 (2001).

    Article  CAS  Google Scholar 

  27. Carreau, M. et al. Development of a new easy complementation assay for DNA repair deficient human syndromes using cloned repair genes. Carcinogenesis 16, 1003–1009 (1995).

    Article  CAS  Google Scholar 

  28. Mellon, I., Hock, T., Reid, R., Porter, P.C. & States, J.C. Polymorphisms in the human xeroderma pigmentosum group A gene and their impact on cell survival and nucleotide excision repair. DNA Repair (Amst.) 1, 531–546 (2002).

    Article  CAS  Google Scholar 

  29. Jones, C.J. & Wood, R.D. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32, 12096–12104 (1993).

    Article  CAS  Google Scholar 

  30. You, J.S., Wang, M. & Lee, S.H. Biochemical analysis of the damage recognition process in nucleotide excision repair. J. Biol. Chem. 278, 7476–7485 (2003).

    Article  CAS  Google Scholar 

  31. Werner, M.H., Gronenborn, A.M. & Clore, G.M. Intercalation, DNA kinking, and the control of transcription. Science 271, 778–784 (1996).

    Article  CAS  Google Scholar 

  32. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004).

    Article  CAS  Google Scholar 

  33. Riedl, T., Hanaoka, F. & Egly, J.M. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 22, 5293–5303 (2003).

    Article  CAS  Google Scholar 

  34. Enzlin, J.H. & Schärer, O.D. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 21, 2045–2053 (2002).

    Article  CAS  Google Scholar 

  35. McDowell, M.L., Nguyen, T. & Cleaver, J.E. A single-site mutation in the XPAC gene alters photoproduct recognition. Mutagenesis 8, 155–161 (1993).

    Article  CAS  Google Scholar 

  36. Kobayashi, T. et al. Mutational analysis of a function of xeroderma pigmentosum group A (XPA) protein in strand specific repair. Nucleic Acids Res. 26, 4662–4668 (1998).

    Article  CAS  Google Scholar 

  37. Fujiwara, Y. et al. Characterization of DNA recognition by the human UV-damaged DNA-binding protein. J. Biol. Chem. 274, 20027–20033 (1999).

    Article  CAS  Google Scholar 

  38. Janicijevic, A. et al. DNA bending by the human damage recognition complex XPC-HR23B. DNA Repair (Amst.) 2, 325–336 (2003).

    Article  CAS  Google Scholar 

  39. Mu, D., Wakasugi, M., Hsu, D.S. & Sancar, A. Characterization of reaction intermediates of human excision repair nuclease. J. Biol. Chem. 272, 28971–28979 (1997).

    Article  CAS  Google Scholar 

  40. O'Donovan, A., Davies, A.A., Moggs, J.G., West, S.C. & Wood, R. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994).

    Article  CAS  Google Scholar 

  41. Ortiz-Lombardia, M. et al. Crystal structure of a DNA Holliday junction. Nat. Struct. Biol. 6, 913–917 (1999).

    Article  CAS  Google Scholar 

  42. Isaacs, R.J. & Spielmann, H.P. A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility. DNA Repair (Amst.) 3, 455–464 (2004).

    Article  CAS  Google Scholar 

  43. Weir, H.M. et al. Structure of the HMG box motif in the B-domain of HMG1. EMBO J. 12, 1311–1319 (1993).

    Article  CAS  Google Scholar 

  44. Read, C.M., Cary, P.D., Crane-Robinson, C., Driscoll, P.C. & Norman, D.G. Solution structure of a DNA-binding domain from HMG1. Nucleic Acids Res. 21, 3427–3436 (1993).

    Article  CAS  Google Scholar 

  45. Kasparkova, J., Mellish, K.J., Qu, Y. & Brabec, V. Site-specific d(GpG) intrastrand cross-links formed by dinuclear platinum complexes. Bending and NMR studies. Biochemistry 35, 16705–16713 (1996).

    Article  CAS  Google Scholar 

  46. Missura, M. et al. Double-check probing of DNA binding and unwinding by XPA-RPA: an architectural function in DNA repair. EMBO J. 20, 3554–3564 (2001).

    Article  CAS  Google Scholar 

  47. Dip, R. & Naegeli, H. Binding of the DNA-dependent protein kinase catalytic subunit to Holliday junctions. Biochem. J. 381, 165–174 (2004).

    Article  CAS  Google Scholar 

  48. Ford, J.M. & Hanawalt, P.C. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl. Acad. Sci. USA 92, 8876–8880 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Vitanescu for excellent technical assistance, J. Kaspàrkovà (Academy of Sciences of the Czech Republic) for the gift of cisplatin-modified oligonucleotides and O. Schärer (State University of New York, Stony Brook) for the gift of XPF–ERCC1. This work was supported by Swiss National Science Foundation grant 3100A-101747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanspeter Naegeli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Screening of XPA single mutants (PDF 84 kb)

Supplementary Fig. 2

Purity of XPA proteins (PDF 86 kb)

Supplementary Fig. 3

Sequence alignment of XPA homologs (PDF 45 kb)

Supplementary Table 1

Oligonucleotide primers for mutagenesis (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camenisch, U., Dip, R., Schumacher, S. et al. Recognition of helical kinks by xeroderma pigmentosum group A protein triggers DNA excision repair. Nat Struct Mol Biol 13, 278–284 (2006). https://doi.org/10.1038/nsmb1061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1061

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing