Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification and evolution of dual-topology membrane proteins

Abstract

Integral membrane proteins are generally believed to have unique membrane topologies. However, it has been suggested that dual-topology proteins that adopt a mixture of two opposite orientations in the membrane may exist. Here we show that the membrane orientations of five dual-topology candidates identified in Escherichia coli are highly sensitive to changes in the distribution of positively charged residues, that genes in families containing dual-topology candidates occur in genomes either as pairs or as singletons and that gene pairs encode two oppositely oriented proteins whereas singletons encode dual-topology candidates. Our results provide strong support for the existence of dual-topology proteins and shed new light on the evolution of membrane-protein topology and structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dual-topology membrane proteins.
Figure 2: Charge mutations shift the orientations of dual-topology membrane proteins.
Figure 3: Homologs of dual-topology proteins occur as closely spaced gene pairs with opposite predicted orientations or as singletons with predicted dual topology.
Figure 4: An internally duplicated protein (Staphylococcus aureus BAB56779) in the DUF606 family.

Similar content being viewed by others

References

  1. Nilsson, I.M. & von Heijne, G. Fine-tuning the topology of a polytopic membrane protein. Role of positively and negatively charged residues. Cell 62, 1135–1141 (1990).

    Article  CAS  Google Scholar 

  2. Gafvelin, G. & von Heijne, G. Topological “frustration” in multi-spanning E. coli inner membrane proteins. Cell 77, 401–412 (1994).

    Article  CAS  Google Scholar 

  3. Ubarretxena-Belandia, I., Baldwin, J.M., Schuldiner, S. & Tate, C.G. Three-dimensional structure of the bacterial multidrug transporter EmrE shows it is an asymmetric homodimer. EMBO J. 22, 6175–6181 (2003).

    Article  CAS  Google Scholar 

  4. Ma, C. & Chang, G. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc. Natl. Acad. Sci. USA 101, 2852–2857 (2004).

    Article  CAS  Google Scholar 

  5. Ninio, S., Elbaz, Y. & Schuldiner, S. The membrane topology of EmrE—a small multidrug transporter from Escherichia coli. FEBS Lett. 562, 193–196 (2004).

    Article  CAS  Google Scholar 

  6. Daley, D.O. et al. Global topology analysis of the Escherichia coli inner membrane proteome. Science 308, 1321–1323 (2005).

    Article  CAS  Google Scholar 

  7. Paulsen, I.T. et al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol. 19, 1167–1175 (1996).

    Article  CAS  Google Scholar 

  8. Sand, O., Gingras, M., Beck, N., Hall, C. & Trun, N. Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology 149, 2107–2117 (2003).

    Article  CAS  Google Scholar 

  9. von Heijne, G. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5, 3021–3027 (1986).

    Article  CAS  Google Scholar 

  10. von Heijne, G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458 (1989).

    Article  CAS  Google Scholar 

  11. Whitley, P., Nilsson, I. & von Heijne, G. De novo design of integral membrane proteins. Nat. Struct. Biol. 1, 858–862 (1994).

    Article  CAS  Google Scholar 

  12. Nishino, K. & Yamaguchi, A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 183, 5803–5812 (2001).

    Article  CAS  Google Scholar 

  13. Sääf, A., Johansson, M., Wallin, E. & von Heijne, G. Divergent evolution of membrane protein topology: The Escherichia coli RnfA and RnfE homologues. Proc. Natl. Acad. Sci. USA 96, 8540–8544 (1999).

    Article  Google Scholar 

  14. Manoil, C. & Beckwith, J. A genetic approach to analyzing membrane protein topology. Science 233, 1403–1408 (1986).

    Article  CAS  Google Scholar 

  15. Feilmeier, B.J., Iseminger, G., Schroeder, D., Webber, H. & Phillips, G.J. Green fluorescent protein functions as a reporter for protein localization in Escherichia coli. J. Bacteriol. 182, 4068–4076 (2000).

    Article  CAS  Google Scholar 

  16. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

    Article  CAS  Google Scholar 

  17. Sääf, A., Baars, L. & von Heijne, G. The internal repeats in the Na+/Ca2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J. Biol. Chem. 276, 18905–18907 (2001).

    Article  Google Scholar 

  18. Shimizu, T., Mitsuke, H., Noto, K. & Arai, M. Internal gene duplication in the evolution of prokaryotic transmembrane proteins. J. Mol. Biol. 339, 1–15 (2004).

    Article  CAS  Google Scholar 

  19. Walz, T. et al. The three-dimensional structure of aquaporin-1. Nature 387, 624–627 (1997).

    Article  CAS  Google Scholar 

  20. Fu, D. et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290, 481–486 (2000).

    Article  CAS  Google Scholar 

  21. van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature 427, 36–44 (2004).

    Article  CAS  Google Scholar 

  22. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  Google Scholar 

  23. Yamashita, A., Singh, S.K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl -dependent neurotransmitter transporters. Nature 437, 215–223 (2005).

    Article  CAS  Google Scholar 

  24. Pornillos, O., Chen, Y.J., Chen, A.P. & Chang, G. X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310, 1950–1953 (2005).

    Article  CAS  Google Scholar 

  25. Rapp, M. et al. Experimentally based topology models for E. coli inner membrane proteins. Protein Sci. 13, 937–945 (2004).

    Article  CAS  Google Scholar 

  26. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  27. Lee, E. & Manoil, C. Mutations eliminating the protein export function of a membrane-spanning sequence. J. Biol. Chem. 269, 28822–28828 (1994).

    CAS  PubMed  Google Scholar 

  28. Studier, F.W., Rosenberg, A.H., Dunn, J.J. & Dubendorff, J.W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  29. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  30. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. Predicting transmembrane protein topology with a hidden Markov model. Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).

    Article  CAS  Google Scholar 

  31. Melén, K., Krogh, A. & von Heijne, G. Reliability measures for membrane protein topology prediction algorithms. J. Mol. Biol. 327, 735–744 (2003).

    Article  Google Scholar 

  32. Granseth, E., Daley, D.O., Rapp, M., Melén, K. & von Heijne, G. Experimentally constrained topology models for 51,208 bacterial inner membrane proteins. J. Mol. Biol. 352, 489–494 (2005).

    Article  CAS  Google Scholar 

  33. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 444–453 (1970).

    Article  Google Scholar 

  34. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  35. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Cancer Foundation, the Marianne and Marcus Wallenberg Foundation and the European Commission (BioSapiens) to G.v.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar von Heijne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

The 174 genome sequences used in the Pfam-based searches for homologs to the E. coli proteins analysed in the main paper. (PDF 94 kb)

Supplementary Table 2

Homologs to the different protein families found in the Pfam searches. (PDF 1575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, M., Granseth, E., Seppälä, S. et al. Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol 13, 112–116 (2006). https://doi.org/10.1038/nsmb1057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1057

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing