Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Cbf5–Nop10 complex is a molecular bracket that organizes box H/ACA RNPs

Abstract

Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-Å resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP components between archaea and eukarya. Thus, the Cbf5–Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the active site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequences and secondary structures of a box H/ACA snoRNA bound to its substrate RNA and of the box H/ACA snoRNA–like region of human telomerase RNA.
Figure 2: Functional conservation of Nop10 and the Cbf5–Nop10 complex between archaea and eukarya.
Figure 3: Structure of the Cbf5–Nop10 complex.
Figure 4: Structural comparison of the Cbf5–Nop10 complex and TruB.
Figure 5: Conserved surfaces of the Cbf5–Nop10 complex interact with H/ACA guide RNA.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Meier, U.T. The many facets of H/ACA ribonucleoproteins. Chromosoma 114, 1–14 (2005).

    Article  CAS  Google Scholar 

  2. Ganot, P., Bortolin, M-L. & Kiss, T. Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89, 799–809 (1997).

    Article  CAS  Google Scholar 

  3. Ni, J., Tien, A.L. & Fournier, M.J. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89, 565–573 (1997).

    Article  CAS  Google Scholar 

  4. Rozhdestvensky, T.S. et al. Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in archaea. Nucleic Acids Res. 31, 869–877 (2003).

    Article  CAS  Google Scholar 

  5. Tang, T.H. et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA 99, 7536–7541 (2002).

    Article  CAS  Google Scholar 

  6. Watkins, N.J. et al. Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4, 1549–1568 (1998).

    Article  CAS  Google Scholar 

  7. Lafontaine, D.L.J., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. & Tollervey, D. The box H+ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527–537 (1998).

    Article  CAS  Google Scholar 

  8. Lubben, B., Fabrizio, P., Kastner, B. & Luhrmann, R. Isolation and characterization of the small nucleolar ribonucleoprotein particle snR30 from Saccharomyces cerevisiae. J. Biol. Chem. 270, 11549–11554 (1995).

    Article  CAS  Google Scholar 

  9. Bousquet-Antonelli, C., Henry, Y., Gélugne, J.P., Caizergues-Ferrer, M. & Kiss, T. A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs. EMBO J. 16, 4770–4776 (1997).

    Article  CAS  Google Scholar 

  10. Henras, A. et al. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17, 7078–7090 (1998).

    Article  CAS  Google Scholar 

  11. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  Google Scholar 

  12. Hamma, T. & Ferré-D'Amaré, A.R. Structure of protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA at 1.8 Å resolution. Structure (Camb) 12, 893–903 (2004).

    Article  CAS  Google Scholar 

  13. Girard, J.P. et al. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 11, 673–682 (1992).

    Article  CAS  Google Scholar 

  14. Wang, C. & Meier, U.T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 23, 1857–1867 (2004).

    Article  CAS  Google Scholar 

  15. Baker, D.L. et al. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev. 19, 1238–1248 (2005).

    Article  CAS  Google Scholar 

  16. Charpentier, B., Muller, S. & Branlant, C. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation. Nucleic Acids Res. 33, 3133–3144 (2005).

    Article  CAS  Google Scholar 

  17. Henras, A.K., Capeyrou, R., Henry, Y. & Caizergues-Ferrer, M. Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 10, 1704–1712 (2004).

    Article  CAS  Google Scholar 

  18. Koonin, E.V. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24, 2411–2415 (1996).

    Article  CAS  Google Scholar 

  19. Aravind, L. & Koonin, E.V. Novel predicted RNA-binding domains associated with the translation machinery. J. Mol. Evol. 48, 291–302 (1999).

    Article  CAS  Google Scholar 

  20. Hoang, C. & Ferré-D'Amaré, A.R. Cocrystal structure of a tRNA Ψ55 pseudouridine synthase: nucleotide flipping by an RNA-modifying enzyme. Cell 107, 929–939 (2001).

    Article  CAS  Google Scholar 

  21. Zebarjadian, Y., King, T., Fournier, M.J., Clarke, L. & Carbon, J. Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol. Cell. Biol. 19, 7461–7472 (1999).

    Article  CAS  Google Scholar 

  22. Morrissey, J.P. & Tollervey, D. Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol. Cell. Biol. 13, 2469–2477 (1993).

    Article  CAS  Google Scholar 

  23. Atzorn, V., Fragapane, P. & Kiss, T. U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol. Cell. Biol. 24, 1769–1778 (2004).

    Article  CAS  Google Scholar 

  24. Bally, M., Hughes, J. & Cesareni, G. SnR30: a new, essential small nuclear RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 16, 5291–5303 (1988).

    Article  CAS  Google Scholar 

  25. Mitchell, J.R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  Google Scholar 

  26. Dez, C. et al. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res. 29, 598–603 (2001).

    Article  CAS  Google Scholar 

  27. Heiss, N.S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  Google Scholar 

  28. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001).

    Article  CAS  Google Scholar 

  29. Marrone, A., Walne, A. & Dokal, I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev. 15, 249–257 (2005).

    Article  CAS  Google Scholar 

  30. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    Article  CAS  Google Scholar 

  31. Krishna, S.S., Majumdar, I. & Grishin, N.V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).

    Article  CAS  Google Scholar 

  32. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  33. Sander, C. & Schneider, R. Database of homology-derived protein structures and structural meaning of sequence alignment. Proteins Struct. Funct. Genet. 9, 56–68 (1991).

    Article  CAS  Google Scholar 

  34. Pan, H., Agarwalla, S., Moustakas, D.T., Finer-Moore, J. & Stroud, R.M. Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proc. Natl Acad. Sci. USA 100, 12648–12653 (2003).

    Article  CAS  Google Scholar 

  35. Chaudhuri, B.N., Chan, S., Perry, L.J. & Yeates, T.O. Crystal structure of the apo forms of ψ 55 tRNA pseudouridine synthase from Mycobacterium tuberculosis: a hinge at the base of the catalytic cleft. J. Biol. Chem. 279, 24585–24591 (2004).

    Article  CAS  Google Scholar 

  36. Phannachet, K. & Huang, R.H. Conformational change of pseudouridine 55 synthase upon its association with RNA substrate. Nucleic Acids Res. 32, 1422–1429 (2004).

    Article  CAS  Google Scholar 

  37. Ferré-D'Amaré, A.R. RNA-modifying enzymes. Curr. Opin. Struct. Biol. 13, 49–55 (2003).

    Article  Google Scholar 

  38. Mueller, E.G. Chips off the old block. Nat. Struct. Biol. 9, 320–322 (2002).

    Article  CAS  Google Scholar 

  39. Spedaliere, C.J., Hamilton, C.S. & Mueller, E.G. Functional importance of motif I of pseudouridine synthases: mutagenesis of aligned lysine and proline residues. Biochemistry 39, 9459–9465 (2000).

    Article  CAS  Google Scholar 

  40. Dyson, H.J. & Wright, P.E. Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6, 197–208 (2005).

    Article  CAS  Google Scholar 

  41. Ishitani, R. et al. Alternative tertiary structure of tRNA for recognition by a posttranscriptional modification enzyme. Cell 113, 383–394 (2003).

    Article  CAS  Google Scholar 

  42. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  43. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  44. Guntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    CAS  PubMed  Google Scholar 

  45. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    Article  CAS  Google Scholar 

  46. Laskowski, R.J., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–290 (1993).

    Article  CAS  Google Scholar 

  47. Nicholls, A., Bharadwaj, R. & Honig, B. GRASP-graphical representation and analysis of surface properties. Biophys. J. 64, A116–A125 (1993).

    Google Scholar 

  48. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  49. Carson, M. Ribbons 2.0. J. Appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  51. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  52. Brünger, A.T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  53. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  54. Lovell, S.C. et al. Structure validation by Cα geometry: φ, ψ and Cβ deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  55. Dragon, F., Pogacic, V. & Filipowicz, W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20, 3037–3048 (2000).

    Article  CAS  Google Scholar 

  56. Liu, J.F. et al. Crystal structure of KD93, a novel protein expressed in human hematopoietic stem/progenitor cells. J. Struct. Biol. 148, 370–374 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Hoang for experimental contributions to initial stages of this project, A. Roll-Mecak for advice on protein coexpression, J. Bolduc for in-house X-ray support, the staff of Advanced Light Source beamline 5.0.2. for synchrotron data collection support, N. Isern at Pacific Northwest National Laboratories and the staff at the National Magnetic Resonance Facility at Madison for support with NMR data collection, N. Leuliott (IBBMC, Université Paris-Sud) for providing yNop10 expression vector and T. Edwards, K. Godin, D. Klein, J. Pitt, B. Shen, B. Stoddard and H. Xiao for discussions. This work was supported by the US National Institutes of Health (grants to A.R.F. and G.V. and Viral Oncology training grant to T.H.). T.H. is a Leukemia & Lymphoma Society Special Fellow. A.R.F. is a Distinguished Young Scholar in Medical Research of the W.M. Keck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriele Varani or Adrian R Ferré-D'Amaré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Multiple sequence alignment of Nop10. (PDF 183 kb)

Supplementary Fig. 2

Zinc-ribbon domain of free aNop10. (PDF 334 kb)

Supplementary Fig. 3

In vitro reconstitution of an archaeal H/ACA RNP analyzed by the electrophoretic mobility shift assay. (PDF 878 kb)

Supplementary Fig. 4

Multiple sequence alignment of Cbf5/Dyskerin (PDF 384 kb)

Supplementary Fig. 5

Multiple sequence alignment of the PUA domain. (PDF 495 kb)

Supplementary Fig. 6

Molecular surface of the aCbf5–aNop10 complex cocrystal structure and a hypothetical RNA double helix. (PDF 730 kb)

Supplementary Fig. 7

Portion of the 1.95-Å resolution solvent-flattened MAD experimental electron density map contoured at 1.1 standard deviations above mean peak height. (PDF 1675 kb)

Supplementary Table 1

NMR and refinement statistics for aNop10 and yNop10. (DOC 48 kb)

Supplementary Methods (PDF 148 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamma, T., Reichow, S., Varani, G. et al. The Cbf5–Nop10 complex is a molecular bracket that organizes box H/ACA RNPs. Nat Struct Mol Biol 12, 1101–1107 (2005). https://doi.org/10.1038/nsmb1036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing