Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe

Abstract

Decapping is a key step in both general and nonsense-mediated 5′ → 3′ mRNA-decay pathways. Removal of the cap structure is catalyzed by the Dcp1–Dcp2 complex. The crystal structure of a C-terminally truncated Schizosaccharomyces pombe Dcp2p reveals two distinct domains: an all-helical N-terminal domain and a C-terminal domain that is a classic Nudix fold. The C-terminal domain of both Saccharomyces cerevisiae and S. pombe Dcp2p proteins is sufficient for decapping activity, although the N-terminal domain can affect the efficiency of Dcp2p function. The binding of Dcp2p to Dcp1p is mediated by a conserved surface on its N-terminal domain, and the N-terminal domain is required for Dcp1p to stimulate Dcp2p activity. The flexible nature of the N-terminal domain relative to the C-terminal domain suggests that Dcp1p binding to Dcp2p may regulate Dcp2p activity through conformational changes of the two domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of spDcp2n and comparison with other Nudix enzymes.
Figure 2: The Nudix motif of spDcp2n is a catalytic center.
Figure 3: Surface views of spDcp2n.
Figure 4: The N-terminal domain affects the efficiency of Dcp2p in vitro.
Figure 5: The N-terminal domain of Dcp2p is required for Dcp1p to stimulate decapping.
Figure 6: The N terminus of Dcp2p is absolutely required in vivo for decapping.
Figure 7: Dcp1p interacts with the N-terminal domain of Dcp2p.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  Google Scholar 

  2. Muhlrad, D. & Parker, R. Premature translational termination triggers mRNA decapping. Nature 370, 578–581 (1994).

    Article  CAS  Google Scholar 

  3. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  Google Scholar 

  4. Lykke-Andersen, J. & Wagner, E. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev. 19, 351–361 (2005).

    Article  CAS  Google Scholar 

  5. Gao, M., Wilusz, C.J., Peltz, S.W. & Wilusz, J. A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. EMBO J. 20, 1134–1143 (2001).

    Article  CAS  Google Scholar 

  6. Sen, G.L. & Blau, H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 7, 633–636 (2005).

    Article  CAS  Google Scholar 

  7. Liu, J., Valencia-Sanchez, M.A., Hannon, G.J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719–723 (2005).

    Article  CAS  Google Scholar 

  8. Coller, J. & Parker, R. Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861–890 (2004).

    Article  CAS  Google Scholar 

  9. van Dijk, E. et al. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915–6924 (2002).

    Article  CAS  Google Scholar 

  10. Wang, Z., Jiao, X., Carr-Schmid, A. & Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA 99, 12663–12668 (2002).

    Article  CAS  Google Scholar 

  11. Steiger, M., Carr-Schmid, A., Schwartz, D.C., Kiledjian, M. & Parker, R. Analysis of recombinant yeast decapping enzyme. RNA 9, 231–238 (2003).

    Article  CAS  Google Scholar 

  12. Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411–5422 (1999).

    Article  CAS  Google Scholar 

  13. Lykke-Andersen, J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol. Cell. Biol. 22, 8114–8121 (2002).

    Article  CAS  Google Scholar 

  14. Beelman, C.A. et al. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642–646 (1996).

    Article  CAS  Google Scholar 

  15. Sakuno, T. et al. Decapping reaction of mRNA requires Dcp1 in fission yeast: its characterization in different species from yeast to human. J. Biochem. 136, 805–812 (2004).

    Article  CAS  Google Scholar 

  16. She, M. et al. Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat. Struct. Mol. Biol. 11, 249–256 (2004).

    Article  CAS  Google Scholar 

  17. Bessman, M.J., Frick, D.N. & O'Handley, S.F. The MutT proteins or “Nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J. Biol. Chem. 271, 25059–25062 (1996).

    Article  CAS  Google Scholar 

  18. Mildvan, A.S. et al. Structures and mechanisms of Nudix hydrolases. Arch. Biochem. Biophys. 433, 129–143 (2005).

    Article  CAS  Google Scholar 

  19. Piccirillo, C., Khanna, R. & Kiledjian, M. Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA 9, 1138–1147 (2003).

    Article  CAS  Google Scholar 

  20. Bailey, S. et al. The crystal structure of diadenosine tetraphosphate hydrolase from Caenorhabditis elegans in free and binary complex forms. Structure (Camb). 10, 589–600 (2002).

    Article  CAS  Google Scholar 

  21. Gabelli, S.B., Bianchet, M.A., Bessman, M.J. & Amzel, L.M. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat. Struct. Biol. 8, 467–472 (2001).

    Article  CAS  Google Scholar 

  22. Abdelghany, H.M., Bailey, S., Blackburn, G.M., Rafferty, J.B. & McLennan, A.G. Analysis of the catalytic and binding residues of the diadenosine tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans by site-directed mutagenesis. J. Biol. Chem. 278, 4435–4439 (2003).

    Article  CAS  Google Scholar 

  23. Decker, C.J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632–1643 (1993).

    Article  CAS  Google Scholar 

  24. Cagney, G., Uetz, P. & Fields, S. High-throughput screening for protein-protein interactions using two-hybrid assay. Methods Enzymol. 328, 3–14 (2000).

    Article  CAS  Google Scholar 

  25. Heaton, B. et al. Analysis of chimeric mRNAs derived from the STE3 mRNA identifies multiple regions within yeast mRNAs that modulate mRNA decay. Nucleic Acids Res. 20, 5365–5373 (1992).

    Article  CAS  Google Scholar 

  26. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  27. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  28. De la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction method. Methods Enzymol. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  29. Terwilliger, T.C. Automated structure solution, density modification and model building. Acta Crystallogr. D Biol. Crystallogr. 58, 1937–1940 (2002).

    Article  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  32. James, P., Halladay, J. & Craig, E.A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, S., Williams, C.J., Wormington, M., Stevens, A. & Peltz, S.W. Monitoring mRNA decapping activity. Methods 17, 46–51 (1999).

    Article  Google Scholar 

  34. LaGrandeur, T.E. & Parker, R. Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. EMBO J. 17, 1487–1496 (1998).

    Article  CAS  Google Scholar 

  35. Caponigro, G., Muhlrad, D. & Parker, R. A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol. Cell. Biol. 13, 5141–5148 (1993).

    Article  CAS  Google Scholar 

  36. Caponigro, G. & Parker, R. Multiple functions for the poly(A)-binding protein in mRNA decapping and deadenylation in yeast. Genes Dev. 9, 2421–2432 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the beamline scientists at ID29 (European Synchrotron Radiation Facility) for assistance and access to their facilities. Plasmids and yeast strains used for the two-hybrid analysis were provided by S. Fields, Howard Hughes Medical Institute, University of Washington. pRP2075 was provided by J. Coller, Howard Hughes Medical Institute, University of Arizona. This work was financially supported by the Agency for Science, Technology and Research (A* Star) in Singapore (H.S.) and by the Howard Hughes Medical Institute (R.P.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roy Parker or Haiwei Song.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of Dcp2 proteins. (PDF 267 kb)

Supplementary Fig. 2

CD spectra of the wild-type spDcp2n and its variants. (PDF 150 kb)

Supplementary Fig. 3

Mutations in scDcp2p do not significantly decrease the level of Dcp2 protein in vivo. (PDF 140 kb)

Supplementary Table 1

Phenotypes of S. pombe (Sp) and S. cerevisiae (Sc) Dcp2p point mutants (PDF 84 kb)

Supplementary Methods

Western analysis of Dcp2-GFP proteins (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

She, M., Decker, C., Chen, N. et al. Crystal structure and functional analysis of Dcp2p from Schizosaccharomyces pombe. Nat Struct Mol Biol 13, 63–70 (2006). https://doi.org/10.1038/nsmb1033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing