Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of an RNA polymerase II–RNA inhibitor complex elucidates transcription regulation by noncoding RNAs

Abstract

The noncoding RNA B2 and the RNA aptamer FC bind RNA polymerase (Pol) II and inhibit messenger RNA transcription initiation, but not elongation. We report the crystal structure of FC*, the central part of FC RNA, bound to Pol II. FC* RNA forms a double stem-loop structure in the Pol II active center cleft. B2 RNA may bind similarly, as it competes with FC* RNA for Pol II interaction. Both RNA inhibitors apparently prevent the downstream DNA duplex and the template single strand from entering the cleft after DNA melting and thus interfere with open-complex formation. Elongation is not inhibited, as nucleic acids prebound in the cleft would exclude the RNA inhibitors. The structure also indicates that A-form RNA could interact with Pol II similarly to a B-form DNA promoter, as suggested for the bacterial transcription inhibitor 6S RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of the minimal Pol II-binding motif in FC RNA.
Figure 2: FC* RNA structure and analysis of Pol II contacts.
Figure 3: Structure of the Pol II–FC* RNA complex.
Figure 4: Model of RNA inhibition.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Allen, T.A., Von Kaenel, S., Goodrich, J.A. & Kugel, J.F. The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat. Struct. Mol. Biol. 11, 816–821 (2004).

    Article  CAS  Google Scholar 

  2. Espinoza, C.A., Allen, T.A., Hieb, A.R., Kugel, J.F. & Goodrich, J.A. B2 RNA binds directly to RNA polymerase II to repress transcript synthesis. Nat. Struct. Mol. Biol. 11, 822–829 (2004).

    Article  CAS  Google Scholar 

  3. Trotochaud, A.E. & Wassarman, K.M. A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol. 12, 313–319 (2005).

    Article  CAS  Google Scholar 

  4. Wassarman, K.M. & Storz, G. 6S RNA regulates E. coli RNA polymerase activity. Cell 101, 613–623 (2000).

    Article  CAS  Google Scholar 

  5. Barrick, J.E., Sudarsan, N., Weinberg, Z., Ruzzo, W.L. & Breaker, R.R. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11, 774–784 (2005).

    Article  CAS  Google Scholar 

  6. Thomas, M. et al. Selective targeting and inhibition of yeast RNA polymerase II by RNA aptamers. J. Biol. Chem. 272, 27980–27986 (1997).

    Article  CAS  Google Scholar 

  7. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  Google Scholar 

  8. Westover, K.D., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004).

    Article  CAS  Google Scholar 

  9. Kettenberger, H., Armache, K.-J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  Google Scholar 

  10. Rasmussen, E.B. & Lis, J.T. In vitro transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc. Natl. Acad. Sci. USA 90, 7923–7927 (1993).

    Article  CAS  Google Scholar 

  11. Lis, J. Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harb. Symp. Quant. Biol. 63, 347–356 (1998).

    Article  CAS  Google Scholar 

  12. Chung, W.H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell 12, 1003–1013 (2003).

    Article  CAS  Google Scholar 

  13. Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. & Darst, S.A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290 (2002).

    Article  CAS  Google Scholar 

  14. Armache, K.-J., Kettenberger, H. & Cramer, P. Architecture of the initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968 (2003).

    Article  CAS  Google Scholar 

  15. Chen, H.T. & Hahn, S. Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119, 169–180 (2004).

    Article  CAS  Google Scholar 

  16. Bushnell, D.A. & Kornberg, R.D. Complete RNA polymerase II at 4.1 Å resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100, 6969–6972 (2003).

    Article  CAS  Google Scholar 

  17. Bushnell, D.A., Westover, K.D., Davis, R.E. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science 303, 983–988 (2004).

    Article  CAS  Google Scholar 

  18. Buratowski, S. & Zhou, H. Functional domains of transcription factor TFIIB. Proc. Natl. Acad. Sci. USA 90, 5633–5637 (1993).

    Article  CAS  Google Scholar 

  19. Pardee, T.S., Bangur, C.S. & Ponticelli, A.S. The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J. Biol. Chem. 273, 17859–17864 (1998).

    Article  CAS  Google Scholar 

  20. Kettenberger, H. & Cramer, P. Fluorescence detection of nucleic acids and proteins in multicomponent crystals. Acta Crystallogr. D Biol. Crystallogr (in the press).

  21. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1996).

    Article  Google Scholar 

  22. Armache, K.-J., Mitterweger, S., Meinhart, A. & Cramer, P. Structures of complete RNA polymerase II and its subcomplex Rpb4/7. J. Biol. Chem. 280, 7131–7134 (2005).

    Article  CAS  Google Scholar 

  23. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  24. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Schulze-Briese and the staff of beamline X06SA at the Swiss Light Source for help. We thank O. Weichenrieder for advice on cloning and in vitro transcription of B2 RNA. M.F. and P.C. are supported by the Deutsche Forschungsgemeinschaft, the European Union and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Famulok or Patrick Cramer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettenberger, H., Eisenführ, A., Brueckner, F. et al. Structure of an RNA polymerase II–RNA inhibitor complex elucidates transcription regulation by noncoding RNAs. Nat Struct Mol Biol 13, 44–48 (2006). https://doi.org/10.1038/nsmb1032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing