Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for transcription inhibition by tagetitoxin

Abstract

Tagetitoxin (Tgt) inhibits transcription by an unknown mechanism. A structure at a resolution of 2.4 Å of the Thermus thermophilus RNA polymerase (RNAP)–Tgt complex revealed that the Tgt-binding site within the RNAP secondary channel overlaps that of the stringent control effector ppGpp, which partially protects RNAP from Tgt inhibition. Tgt binding is mediated exclusively through polar interactions with the β and β′ residues whose substitutions confer resistance to Tgt in vitro. Importantly, a Tgt phosphate, together with two active site acidic residues, coordinates the third Mg2+ ion, which is distinct from the two catalytic metal ions. We show that Tgt inhibits all RNAP catalytic reactions and propose a mechanism in which the Tgt-bound Mg2+ ion has a key role in stabilization of an inactive transcription intermediate. Remodeling of the active site by metal ions could be a common theme in the regulation of catalysis by nucleic acid enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNAP–Tgt structure.
Figure 2: The Tgt-binding site.
Figure 3: Tgt and ppGpp bind to overlapping sites on RNAP.
Figure 4: Tgt inhibits all catalytic reactions.
Figure 5: Mechanism of Tgt action.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rozovskaia, T., Chenchik, A. & Bibilashvili, R. Reaction of pyrophosphorolysis catalyzed by Escherichia coli RNA polymerase. Mol. Biol. (Mosk.) 15, 636–652 (1981).

    CAS  Google Scholar 

  2. Sosunov, V. et al. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22, 2234–2244 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Komissarova, N. & Kashlev, M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′ end of the RNA intact and extruded. Proc. Natl. Acad. Sci. USA 94, 1755–1760 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Orlova, M., Newlands, J., Das, A., Goldfarb, A. & Borukhov, S. Intrinsic transcript cleavage activity of RNA polymerase. Proc. Natl. Acad. Sci. USA 92, 4596–4600 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steitz, T.A. A mechanism for all polymerases. Nature 391, 231–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Vassylyev, D.G. et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417, 712–719 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, G. et al. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98, 811–824 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Artsimovitch, I. et al. Structural basis for transcription regulation by alarmone ppGpp. Cell 117, 299–310 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Cramer, P. Structure and function of RNA polymerase II. Adv. Protein Chem. 67, 1–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lukens, J.H. & Durbin, R.D. Tagetitoxin affects plastid development in seedling leaves of wheat. Planta 165, 311–321 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Mathews, D.E. & Durbin, R.D. Tagetitoxin inhibits RNA synthesis directed by RNA polymerases from chloroplasts and Escherichia coli. J. Biol. Chem. 265, 493–498 (1990).

    CAS  PubMed  Google Scholar 

  12. Mathews, D.E. & Durbin, R.D. Mechanistic aspects of tagetitoxin inhibition of RNA polymerase from Escherichia coli. Biochemistry 33, 11987–11992 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Steinberg, T.H., Mathews, D.E., Durbin, R.D. & Burgess, R.R. Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J. Biol. Chem. 265, 499–505 (1990).

    CAS  PubMed  Google Scholar 

  14. Temiakov, D. et al. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol. Cell 19, 655–666 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Artsimovitch, I. et al. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122, 351–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Svetlov, V., Vassylyev, D.G. & Artsimovitch, I. Discrimination against deoxyribonucleotide substrates by bacterial RNA polymerase. J. Biol. Chem. 279, 38087–38090 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Westover, K.D., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: nucleotide selection by rotation in the RNA polymerase II active center. Cell 119, 481–489 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, Y.N. & Jin, D.J. The rpoB mutants destabilizing initiation complexes at stringently controlled promoters behave like “stringent” RNA polymerases in Escherichia coli. Proc. Natl. Acad. Sci. USA 95, 2908–2913 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jin, D.J. & Gross, C. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J. Mol. Biol. 202, 45–58 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Yuzenkova, J. et al. Mutations of bacterial RNA polymerase leading to resistance to microcin J25. J. Biol. Chem. 277, 50867–50875 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Artsimovitch, I., Chu, C., Lynch, A.S. & Landick, R. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition. Science 302, 650–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Adelman, K. et al. Molecular mechanism of transcription inhibition by peptide antibiotic microcin J25. Mol. Cell 14, 753–762 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Mukhopadhyay, J., Sineva, E., Knight, J., Levy, R.M. & Ebright, R.H. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol. Cell 14, 739–751 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Opalka, N. et al. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114, 335–345 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Laptenko, O., Lee, J., Lomakin, I. & Borukhov, S. Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. EMBO J. 22, 6322–6334 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Perederina, A. et al. Regulation through the secondary channel–structural framework for ppGpp-DksA synergism during transcription. Cell 118, 297–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Paul, B.J. et al. DksA: a critical component of the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and the initiating NTP. Cell 118, 311–322 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Artsimovitch, I. & Landick, R. The transcriptional regulator RfaH stimulates RNA chain synthesis after recruitment to elongation complexes by the exposed nontemplate DNA strand. Cell 109, 193–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Steinberg, T.H. & Burgess, R.R. Tagetitoxin inhibition of RNA polymerase III transcription results from enhanced pausing at discrete sites and is template-dependent. J. Biol. Chem. 267, 20204–20211 (1992).

    CAS  PubMed  Google Scholar 

  30. Kettenberger, H., Armache, K.J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Armache, K.J., Kettenberger, H. & Cramer, P. The dynamic machinery of mRNA elongation. Curr. Opin. Struct. Biol. 15, 197–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Temiakov, D. et al. Structural basis for substrate selection by T7 RNA polymerase. Cell 116, 381–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yin, Y.W. & Steitz, T.A. The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116, 393–404 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, L., Arora, K., Beard, W.A., Wilson, S.H. & Schlick, T. Critical role of magnesium ions in DNA polymerase β's closing and active site assembly. J. Am. Chem. Soc. 126, 8441–8453 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Nowotny, M., Gaidamakov, S.A., Crouch, R.J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Kettenberger, H., Armache, K.J. & Cramer, P. Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114, 347–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Sosunova, E. et al. Donation of catalytic residues to RNA polymerase active center by transcription factor Gre. Proc. Natl. Acad. Sci. USA 100, 15469–15474 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Artsimovitch, I., Svetlov, V., Anthony, L., Burgess, R.R. & Landick, R. RNA polymerases from Bacillus subtilis and Escherichia coli differ in recognition of regulatory signals in vitro. J. Bacteriol. 182, 6027–6035 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  41. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Esnouf, R.M. Further additions to MolScript version 1.4, including reading and contouring of electron-density maps. Acta Crystallogr. D 55, 938–940 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Merrit, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Landick and J. Roberts for helpful comments. This work was supported by grants GM74252 and GM74840 (to D.G.V.) and GM67153 (to I.A.) from the US National Institutes of Health, and by RIKEN (D.G.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry G Vassylyev or Irina Artsimovitch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Tgt inhibits transcription by the E. coli and T. thermophilus RNAPs similarly (PDF 220 kb)

Supplementary Fig. 2

Comparison with the eukaryotic enzymes (PDF 120 kb)

Supplementary Fig. 3

Tgt acts as an uncompetitive inhibitor. (PDF 114 kb)

Supplementary Table 1

Plasmids and oligonucleotides used in this work (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassylyev, D., Svetlov, V., Vassylyeva, M. et al. Structural basis for transcription inhibition by tagetitoxin. Nat Struct Mol Biol 12, 1086–1093 (2005). https://doi.org/10.1038/nsmb1015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1015

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing