Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compact and ordered collapse of randomly generated RNA sequences

Abstract

As the raw material for evolution, arbitrary RNA sequences represent the baseline for RNA structure formation and a standard to which evolved structures can be compared. Here, we set out to probe, using physical and chemical methods, the structural properties of RNAs having randomly generated oligonucleotide sequences that were of sufficient length and information content to encode complex, functional folds, yet were unbiased by either genealogical or functional constraints. Typically, these unevolved, nonfunctional RNAs had sequence-specific secondary structure configurations and compact magnesium-dependent conformational states comparable to those of evolved RNA isolates. But unlike evolved sequences, arbitrary sequences were prone to having multiple competing conformations. Thus, for RNAs the size of small ribozymes, natural selection seems necessary to achieve uniquely folding sequences, but not to account for the well-ordered secondary structures and overall compactness observed in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PAGE of evolved and unevolved RNA sequences.
Figure 2: Velocity sedimentation results from evolved and unevolved RNA sequences.
Figure 3: Results of chemical probing of evolved and unevolved RNA sequences.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Holley, R.W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965).

    Article  CAS  Google Scholar 

  2. Fresco, J.R. From DNA melting profiles to tRNA crystals and RNA chaperones. in RNA Structure and Function (ed. Grunberg-Manago, M.) 1–35 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1998).

    Google Scholar 

  3. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14719–14735 (1998).

    Article  CAS  Google Scholar 

  4. Batey, R.T., Rambo, R.P. & Doudna, J.A. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Edn. Engl. 38, 2326–2343 (1999).

    Article  CAS  Google Scholar 

  5. Buchmueller, K.L. & Weeks, K.M. Near native structure in an RNA collapsed state. Biochemistry 42, 13869–13878 (2003).

    Article  CAS  Google Scholar 

  6. Heilman-Miller, S.L., Thirumalai, D. & Woodson, S.A. Role of counterion condensation in folding of the Tetrahymena ribozyme I. Equilibrium stabilization by cations. J. Mol. Biol. 306, 1157–1166 (2001).

    Article  CAS  Google Scholar 

  7. Heilman-Miller, S.L., Pan, J., Thirumalai, D. & Woodson, S.A. Role of counterion condensation in folding of the Tetrahymena ribozyme II. Counterion-dependence of folding kinetics. J. Mol. Biol. 309, 57–68 (2001).

    Article  CAS  Google Scholar 

  8. Doty, P., Boedtker, J.R., Fresco, J.R. & Haselkorn, M.L. Secondary structure in ribonucleic acids. Proc. Natl. Acad. Sci. USA 45, 482–499 (1959).

    Article  CAS  Google Scholar 

  9. Fresco, J.R., Alberts, B.M. & Doty, P. Some molecular details of the secondary structure of ribonucleic acid. Nature 188, 98–101 (1960).

    Article  CAS  Google Scholar 

  10. Schultes, E.A., Hraber, P.T. & LaBean, T.H. Estimating the contributions of selection and self-organization in RNA secondary structure. J. Mol. Evol. 49, 76–83 (1999).

    Article  CAS  Google Scholar 

  11. Seffens, W. & Digby, D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27, 1578–1584 (1999).

    Article  CAS  Google Scholar 

  12. Higgs, P.G. RNA secondary structure: Physical and computational aspects. Q. Rev. Biophys. 33, 199–253 (2000).

    Article  CAS  Google Scholar 

  13. Le, S.Y., Zhang, K.Z. & Maizel, J.V. RNA molecules with structure dependent functions are uniquely folded. Nucleic Acids Res. 30, 3574–3582 (2002).

    Article  CAS  Google Scholar 

  14. Clote, P., Ferre, F., Kranakis, E. & Krizanc, D. Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA 11, 578–591 (2005).

    Article  CAS  Google Scholar 

  15. Shi, H.J. & Moore, P.B. The crystal structure of yeast phenylalanine tRNA at 1.93 angstrom resolution: A classic structure revisited. RNA 6, 1091–1105 (2000).

    Article  CAS  Google Scholar 

  16. Ferre-D'Amare, A.R., Zhou, K. & Doudna, J.A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998).

    Article  CAS  Google Scholar 

  17. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  18. Ekland, E.H., Szostak, J.W. & Bartel, D.P. Structurally complex and highly-active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995).

    Article  CAS  Google Scholar 

  19. Schultes, E.A. & Bartel, D.P. One sequence, two ribozymes: Implications for the emergence of new ribozyme folds. Science 289, 448–452 (2000).

    Article  CAS  Google Scholar 

  20. Juneau, K. & Cech, T.R. In vitro selection of RNAs with increased tertiary structure stability. RNA 5, 1119–1129 (1999).

    Article  CAS  Google Scholar 

  21. Uhlenbeck, O.C. Keeping RNA happy. RNA 1, 4–6 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lilley, D.M. Analysis of global conformation of branched RNA species using electrophoresis and fluorescence. Methods Enzymol. 317, 368–393 (2000).

    Article  CAS  Google Scholar 

  23. Philo, J.S. An improved function for fitting sedimentation velocity data for low-molecular-weight solutes. Biophys. J. 72, 435–444 (1997).

    Article  CAS  Google Scholar 

  24. Fang, X. et al. Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry 39, 11107–11113 (2000).

    Article  CAS  Google Scholar 

  25. Brown, R.S., Dewen, J.C. & Klug, A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of the yeast phenylalanine tRNA. Biochemistry 24, 4785–4801 (1985).

    Article  CAS  Google Scholar 

  26. Krzyzosiak, W.J. et al. Characterization of the lead(II)-induced cleavages in tRNAs in solution and effect of the Y-base removal in yeast tRNAPhe. Biochemistry 27, 5771–5777 (1988).

    Article  CAS  Google Scholar 

  27. Matysiak, M., Wrzesinski, J. & Ciesiolka, J. Sequential folding of the genomic ribozyme of the hepatitis delta virus: Structural analysis of RNA transcription intermediates. J. Mol. Biol. 291, 283–294 (1999).

    Article  CAS  Google Scholar 

  28. Mathews, D.H., Sabina, J., Zucker, M. & Turner, H. Expanded sequence dependence of thermodynamic parameters provides robust prediction of RNA secondary structure. J. Mol. Biol. 288, 911–940 (1999).

    Article  CAS  Google Scholar 

  29. Schultes, E.A., LaBean, T.H. & Hraber, P.T. A parameterization of RNA sequence space. Complexity 4, 61–71 (1999).

    Article  Google Scholar 

  30. Go, N. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983).

    Article  CAS  Google Scholar 

  31. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: The A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  Google Scholar 

  32. Battle, D.J. & Doudna, J.A. Specificity of RNA-RNA helix recognition. Proc. Natl. Acad. Sci. USA 99, 11676–11681 (2002).

    Article  CAS  Google Scholar 

  33. Hecht, M.H., Das, A., Go, A., Bradley, L.H. & Wei, Y.N. De novo proteins from designed combinatorial libraries. Protein Sci. 13, 1711–1723 (2004).

    Article  CAS  Google Scholar 

  34. Prijambada, I.D. et al. Solubility of artificial proteins with random sequences. FEBS Lett. 382, 21–25 (1996).

    Article  CAS  Google Scholar 

  35. Davidson, A.R., Liumb, K.J. & Sauer, R.T. Cooperatively folded proteins in random sequence libraries. Nat. Struct. Biol. 2, 856–864 (1995).

    Article  CAS  Google Scholar 

  36. Davidson, A.R. & Sauer, R.T. Folded proteins occur frequently in libraries of random amino acid sequences. Proc. Natl. Acad. Sci. USA 91, 2146–2150 (1994).

    Article  CAS  Google Scholar 

  37. Wei, Y.N. & Hecht, M.H. Enzyme-like proteins from an unselected library of designed amino acid sequences. Protein Eng. Des. Sel. 17, 67–75 (2004).

    Article  CAS  Google Scholar 

  38. Mohanty, U. & McLaughlin, L.W. On the characteristics of migration of oligomeric DNA in polyacrylamide gels and in free solution. Annu. Rev. Phys. Chem. 52, 93–106 (2001).

    Article  CAS  Google Scholar 

  39. Bloomfield, V., Crothers, D.A. & Tinoco, I. Physical Chemistry of Nucleic Acids (Harper and Row, New York, USA, 1974).

    Google Scholar 

  40. Fernandes, M.X., Ortega, A., Lopez Martinez, M.C. & Garcia de la Torre, J. Calculation of hydrodynamic properties of small nucleic acids from their atomic structure. Nucleic Acids Res. 30, 1782–1788 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Müller, J.G. Ruby, M.S. Lawrence and J.S. Philo for comments on the manuscript; P. Hraber and M. Deras for computational assistance; V. Carey for statistical consultation; and R. Burton, G. Hersch and R. Sauer for use of the XL-A ultracentrifuge. This work was supported by grants from the US National Institutes of Health to D.P.B, from the Medical Foundation to E.A.S and from the US National Science Foundation to A.S. and U.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P Bartel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Evolved and arbitrary RNA sequences (PDF 44 kb)

Supplementary Fig. 2

Mapping lead-induced cleavage coefficients onto known or predicted secondary structures for evolved and arbitrary RNA sequences (PDF 611 kb)

Supplementary Table 1

Estimated effective size and Stokes radii of folded RNAs (PDF 52 kb)

Supplementary Table 2

Sedimentation coefficients and fitted molecular masses (PDF 57 kb)

Supplementary Methods (PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultes, E., Spasic, A., Mohanty, U. et al. Compact and ordered collapse of randomly generated RNA sequences. Nat Struct Mol Biol 12, 1130–1136 (2005). https://doi.org/10.1038/nsmb1014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing