Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the heterodimeric core primase

Abstract

Primases are DNA-dependent RNA polymerases that synthesize the oligoribonucleotide primers essential to DNA replication. In archaeal and eukaryotic organisms, the core primase is a heterodimeric enzyme composed of a small and a large subunit. Here we report a crystallographic and biochemical analysis of the core primase from the archaeon Sulfolobus solfataricus. The structure provides the first three-dimensional description of the large subunit and its interaction with the small subunit. The evolutionary conservation of amino acids at the protein-protein interface implies that the observed mode of subunit association is conserved among archaeal and eukaryotic primases. The orientation of the large subunit in the core primase probably excludes its direct involvement in catalysis. Modeling of a DNA-RNA helix together with structure-based site-directed mutagenesis provides insight into the mechanism of template DNA binding and RNA primer synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Sso core primase.
Figure 2: Structure of the Sso core primase.
Figure 3: The PriS-PriL interface of the Sso core primase.
Figure 4: Analysis of the PriS-PriL interface.
Figure 5: The Gly-Ser dipeptide insertion between PriS residues Glu198 and Ile199 weakens the interaction of the primase subunits.
Figure 6: Interaction of the Sso core primase with DNA template and RNA primer.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kornberg, A. & Baker, T.A. DNA Replication 2nd edn (W.H. Freeman and Company, New York, 1992).

    Google Scholar 

  2. Frick, D.N. & Richardson, C.C. DNA primases. Annu. Rev. Biochem. 70, 39–80 (2001).

    Article  CAS  Google Scholar 

  3. Iyer, L.M., Koonin, E.V., Leipe, D.D. & Aravind, L. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res. 33, 3875–3896 (2005).

    Article  CAS  Google Scholar 

  4. Foiani, M., Lucchini, G. & Plevani, P. The DNA polymerase α-primase complex couples DNA replication, cell-cycle progression and DNA-damage response. Trends Biochem. Sci. 22, 424–427 (1997).

    Article  CAS  Google Scholar 

  5. Arezi, B. & Kuchta, R.D. Eukaryotic DNA primase. Trends Biochem. Sci. 25, 572–576 (2000).

    Article  CAS  Google Scholar 

  6. Santocanale, C., Foiani, M., Lucchini, G. & Plevani, P. The isolated 48,000-dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J. Biol. Chem. 268, 1343–1348 (1993).

    CAS  PubMed  Google Scholar 

  7. Copeland, W.C. & Wang, T.S. Enzymatic characterization of the individual mammalian primase subunits reveals a biphasic mechanism for initiation of DNA replication. J. Biol. Chem. 268, 26179–26189 (1993).

    CAS  PubMed  Google Scholar 

  8. Schneider, A. et al. Primase activity of human DNA polymerase α-primase. Divalent cations stabilize the enzyme activity of the p48 subunit. J. Biol. Chem. 273, 21608–21615 (1998).

    Article  CAS  Google Scholar 

  9. Foiani, M., Santocanale, C., Plevani, P. & Lucchini, G. A single essential gene, PRI2, encodes the large subunit of DNA primase in Saccharomyces cerevisiae. Mol. Cell. Biol. 9, 3081–3087 (1989).

    Article  CAS  Google Scholar 

  10. Arezi, B., Kirk, B.W., Copeland, W.C. & Kuchta, R.D. Interactions of DNA with human DNA primase monitored with photoactivatable crosslinking agents: implications for the role of the p58 subunit. Biochemistry 38, 12899–12907 (1999).

    Article  CAS  Google Scholar 

  11. Zerbe, L.K. & Kuchta, R.D. The p58 subunit of human DNA primase is important for primer initiation, elongation, and counting. Biochemistry 41, 4891–4900 (2002).

    Article  CAS  Google Scholar 

  12. Edgell, D.R. & Doolittle, W.F. Archaea and the origin(s) of DNA replication proteins. Cell 89, 995–998 (1997).

    Article  CAS  Google Scholar 

  13. Dionne, I. et al. DNA replication in the hyperthermophilic archaeon Sulfolobus solfataricus. Biochem. Soc. Trans. 31, 674–676 (2003).

    Article  CAS  Google Scholar 

  14. Grabowski, B. & Kelman, Z. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu. Rev. Microbiol. 57, 487–516 (2003).

    Article  CAS  Google Scholar 

  15. Desogus, G., Onesti, S., Brick, P., Rossi, M. & Pisani, F.M. Identification and characterization of a DNA primase from the hyperthermophilic archaeon Methanococcus jannaschii. Nucleic Acids Res. 27, 4444–4450 (1999).

    Article  CAS  Google Scholar 

  16. Makarova, K.S. et al. Comparative genomics of the archaea (euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res. 9, 608–628 (1999).

    CAS  PubMed  Google Scholar 

  17. Bocquier, A.A. et al. Archaeal primase: bridging the gap between RNA and DNA polymerases. Curr. Biol. 11, 452–456 (2001).

    Article  CAS  Google Scholar 

  18. Liu, L. et al. The archaeal DNA primase: biochemical characterization of the p41-p46 complex from Pyrococcus furiosus. J. Biol. Chem. 276, 45484–45490 (2001).

    Article  CAS  Google Scholar 

  19. Lao-Sirieix, S.H. & Bell, S.D. The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3′-terminal nucleotidyl transferase activities. J. Mol. Biol. 344, 1251–1263 (2004).

    Article  CAS  Google Scholar 

  20. Augustin, M.A., Huber, R. & Kaiser, J.T. Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat. Struct. Biol. 8, 57–61 (2001).

    Article  CAS  Google Scholar 

  21. Ito, N., Nureki, O., Shirouzu, M., Yokoyama, S. & Hanaoka, F. Crystal structure of the Pyrococcus horikoshii DNA primase-UTP complex: implications for the mechanism of primer synthesis. Genes Cells 8, 913–923 (2003).

    Article  CAS  Google Scholar 

  22. Steitz, T.A., Smerdon, S.J., Jager, J. & Joyce, C.M. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266, 2022–2025 (1994).

    Article  CAS  Google Scholar 

  23. Lipps, G., Weinzierl, A.O., von Scheven, G., Buchen, C. & Cramer, P. Structure of a bifunctional DNA primase-polymerase. Nat. Struct. Mol. Biol. 11, 157–162 (2004).

    Article  CAS  Google Scholar 

  24. Marini, F. et al. A role for DNA primase in coupling DNA replication to DNA damage response. EMBO J. 16, 639–650 (1997).

    Article  CAS  Google Scholar 

  25. Copeland, W.C. & Tan, X. Active site mapping of the catalytic mouse primase subunit by alanine scanning mutagenesis. J. Biol. Chem. 270, 3905–3913 (1995).

    Article  CAS  Google Scholar 

  26. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  27. Matsui, E. et al. Distinct domain functions regulating de novo DNA synthesis of thermostable DNA primase from hyperthermophile Pyrococcus horikoshii. Biochemistry 42, 14968–14976 (2003).

    Article  CAS  Google Scholar 

  28. Glaser, F. et al. ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163–164 (2003).

    Article  CAS  Google Scholar 

  29. Pan, H. & Wigley, D.B. Structure of the zinc-binding domain of Bacillus stearothermophilus DNA primase. Structure Fold. Des. 8, 231–239 (2000).

    Article  CAS  Google Scholar 

  30. Kato, M., Ito, T., Wagner, G. & Ellenberger, T. A molecular handoff between bacteriophage T7 DNA primase and T7 DNA polymerase initiates DNA synthesis. J. Biol. Chem. 279, 30554–30562 (2004).

    Article  CAS  Google Scholar 

  31. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

  32. Horton, N.C. & Finzel, B.C. The structure of an RNA/DNA hybrid: a substrate of the ribonuclease activity of HIV-1 reverse transcriptase. J. Mol. Biol. 264, 521–533 (1996).

    Article  CAS  Google Scholar 

  33. Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994).

    Article  CAS  Google Scholar 

  34. Sheaff, R.J. & Kuchta, R.D. Mechanism of calf thymus DNA primase: slow initiation, rapid polymerization, and intelligent termination. Biochemistry 32, 3027–3037 (1993).

    Article  CAS  Google Scholar 

  35. Weeks, C.M. & Miller, R. The design and implementation of SnB version 2.0. J. Appl. Crystallogr. 32, 120–124 (1999).

    Article  CAS  Google Scholar 

  36. La Fortelle, E.D. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  39. Blanc, E., Roversi, P., Vonrhein, C., Flensburg, S.M. & Bricogne, G. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D 60, 2210–2221 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Wellcome Trust senior research fellowship award to L.P. and by the Medical Research Council in the laboratory of S.D.B. We thank X.-J. Lu for help with X3DNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Pellegrini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Crystallographic analysis of the Sso core primase (PDF 871 kb)

Supplementary Fig. 2

Structure-based multiple PriS sequence alignment. (PDF 1147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lao-Sirieix, SH., Nookala, R., Roversi, P. et al. Structure of the heterodimeric core primase. Nat Struct Mol Biol 12, 1137–1144 (2005). https://doi.org/10.1038/nsmb1013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing