Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

One motor driving two translocases

In this issue, Wu et al. show that the RecBC helicase, which is involved in repairing double-strand DNA breaks, uses one ATPase motor to drive two translocases along opposite strands of DNA—much as an all-wheel drive engine controls movement of both front and back wheels. This mechanism may allow RecBC to load onto blunt-end DNA more efficiently and to move through obstacles such as gaps and DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of RecBC helicase movement on double-stranded DNA.

References

  1. Matson, S.W., Bean, D.W. & George, J.W. Bioessays 16, 13–22 (1994).

    Article  CAS  Google Scholar 

  2. Lohman, T.M. & Bjornson, K.P. Annu. Rev. Biochem. 65, 169–214 (1996).

    Article  CAS  Google Scholar 

  3. Hall, M.C. & Matson, S.W. Mol. Microbiol. 34, 867–877 (1999).

    Article  CAS  Google Scholar 

  4. Patel, S.S. & Picha, K.M. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  Google Scholar 

  5. Patel, S.S. & Donmez, I. J. Biol. Chem. 281, 18265–18268 (2006).

    Article  CAS  Google Scholar 

  6. Singleton, M.R., Dillingham, M.S. & Wigley, D.B. Annu. Rev. Biochem. 76, 23–50 (2007).

    Article  CAS  Google Scholar 

  7. Pyle, A.M. Annu. Rev. Biophys. 37, 317–336 (2008).

    Article  CAS  Google Scholar 

  8. Dillingham, M.S. & Kowalczykowski, S.C. Microbiol. Mol. Biol. Rev. 72, 642–671 (2008).

    Article  CAS  Google Scholar 

  9. Wu, C.G., Bradford, C. & Lohman, T.M. Nat. Struct. Mol. Biol. 42, 1210–1217 (2010).

    Article  Google Scholar 

  10. Smith, G.R. Annu. Rev. Genet. 35, 243–274 (2001).

    Article  CAS  Google Scholar 

  11. Taylor, A.F. & Smith, G.R. Nature 423, 889–893 (2003).

    Article  CAS  Google Scholar 

  12. Bianco, P.R. et al. Nature 409, 374–378 (2001).

    Article  CAS  Google Scholar 

  13. Dillingham, M.S., Wigley, D.B. & Webb, M.R. Biochemistry 41, 643–651 (2002).

    Article  CAS  Google Scholar 

  14. Fischer, C.J. & Lohman, T.M. J. Mol. Biol. 344, 1265–1286 (2004).

    Article  CAS  Google Scholar 

  15. Tomko, E.J., Fischer, C.J. & Lohman, T.M. Methods 51, 269–276 (2010).

    Article  CAS  Google Scholar 

  16. Singleton, M.R., Dillingham, M.S., Gaudier, M., Kowalczykowski, S.C. & Wigley, D.B. Nature 432, 187–193 (2004).

    Article  CAS  Google Scholar 

  17. Bianco, P.R. & Kowalczykowski, S.C. Nature 405, 368–372 (2000).

    Article  CAS  Google Scholar 

  18. Wigley, D.B. Curr. Biol. 10, R444–R446 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smita S Patel.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S. One motor driving two translocases. Nat Struct Mol Biol 17, 1166–1167 (2010). https://doi.org/10.1038/nsmb1010-1166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1010-1166

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing