Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67

Abstract

The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226–269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226–2693P, revealing not only local recognition of pThr234 but also the extension of the β-sheet of the FHA domain by the addition of a β-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 1H-15N HSQC spectra of hNIFK226–2693P free (black) and in complex with Ki67FHA (red).
Figure 2: Intermolecular NOEs observed for the Ki67FHA–hNIFK226–2693P complex from 3D 13C-edited, 12C/14N-filtered NOE spectra.
Figure 3: Overall structure of the Ki67FHA–hNIFK226–2693P complex.
Figure 4: Intermolecular interactions between Ki67FHA and hNIFK226–2693P.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Gerdes, J., Schwab, U., Lemke, H. & Stein, H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int. J. Cancer 31, 13–20 (1983).

    CAS  PubMed  Google Scholar 

  2. Gerdes, J. et al. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710–1715 (1984).

    CAS  PubMed  Google Scholar 

  3. Brown, D.C. & Gatter, K.C. Ki67 protein: the immaculate deception? Histopathology 40, 2–11 (2002).

    CAS  PubMed  Google Scholar 

  4. Scholzen, T. & Gerdes, J. The Ki-67 protein: from the known and the unknown. J. Cell Physiol. 182, 311–22 (2000).

    CAS  PubMed  Google Scholar 

  5. Schluter, C. et al. The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J. Cell Biol. 123, 513–522 (1993).

    CAS  PubMed  Google Scholar 

  6. MacCallum, D.E. & Hall, P.A. The biochemical characterization of the DNA binding activity of pKi67. J. Pathol. 191, 286–298 (2000).

    CAS  PubMed  Google Scholar 

  7. Endl, E. & Gerdes, J. Posttranslational modifications of the KI-67 protein coincide with two major checkpoints during mitosis. J. Cell. Physiol. 182, 371–380 (2000).

    CAS  PubMed  Google Scholar 

  8. Scholzen, T. et al. The Ki-67 protein interacts with members of the heterochromatin protein 1 (HP1) family: a potential role in the regulation of higher-order chromatin structure. J. Pathol. 196, 135–144 (2002).

    CAS  PubMed  Google Scholar 

  9. Liao, H., Byeon, I.J. & Tsai, M.D. Structure and function of a new phosphopeptide-binding domain containing the FHA2 of Rad53. J. Mol. Biol. 294, 1041–1049 (1999).

    CAS  PubMed  Google Scholar 

  10. Durocher, D., Henckel, J., Fersht, A.R. & Jackson, S.P. The FHA domain is a modular phosphopeptide recognition motif. Mol. Cell 4, 387–394 (1999).

    CAS  PubMed  Google Scholar 

  11. Durocher, D. et al. The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol. Cell 6, 1169–1182 (2000).

    CAS  PubMed  Google Scholar 

  12. Liao, H. et al. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J. Mol. Biol. 304, 941–951 (2000).

    CAS  PubMed  Google Scholar 

  13. Li, J., Lee, G.I., Van Doren, S.R. & Walker, J.C. The FHA domain mediates phosphoprotein interactions. J. Cell Sci. 113, 4143–4149 (2000).

    CAS  PubMed  Google Scholar 

  14. Lee, G.I., Ding, Z., Walker, J.C. & Van Doren, S.R. NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase. Proc. Natl. Acad. Sci. USA 100, 11261–11266 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schultz, J., Milpetz, F., Bork, P. & Ponting, C.P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA 95, 5857–5864 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sueishi, M., Takagi, M. & Yoneda, Y. The forkhead-associated domain of Ki-67 antigen interacts with the novel kinesin-like protein Hklp2. J. Biol. Chem. 275, 28888–28892 (2000).

    CAS  PubMed  Google Scholar 

  17. Takagi, M., Sueishi, M., Saiwaki, T., Kametaka, A. & Yoneda, Y. A novel nucleolar protein, NIFK, interacts with the forkhead associated domain of Ki-67 antigen in mitosis. J. Biol. Chem. 276, 25386–25391 (2001).

    CAS  PubMed  Google Scholar 

  18. Li, H., Byeon, I.J., Ju, Y. & Tsai, M.D. Structure of human Ki67 FHA domain and its binding to a phosphoprotein fragment from hNIFK reveal unique recognition sites and new views to the structural basis of FHA domain functions. J. Mol. Biol. 335, 371–381 (2004).

    CAS  PubMed  Google Scholar 

  19. Pike, B.L., Yongkiettrakul, S., Tsai, M.D. & Heierhorst, J. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 2779–2788 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, H., Tanaka, K., Nogochi, E., Nogochi, C. & Russell, P. Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast. Mol. Cell. Biol. 23, 8395–8403 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee, S.J., Schwartz, M.F., Duong, J.K. & Stern, D.F. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Mol. Cell. Biol. 23, 6300–6314 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cerosaletti, K.M. & Concannon, P. Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J. Biol. Chem. 278, 21944–21951 (2003).

    CAS  PubMed  Google Scholar 

  23. Stavridi, E.S. et al. Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein and its complex with tungstate. Structure 10, 891–899 (2002).

    CAS  PubMed  Google Scholar 

  24. Li, J. et al. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol. Cell 9, 1045–1054 (2002).

    CAS  PubMed  Google Scholar 

  25. Yuan, C., Yongkiettrakul, S., Byeon, I.J., Zhou, S. & Tsai, M.D. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. J. Mol. Biol. 314, 563–575 (2001).

    CAS  PubMed  Google Scholar 

  26. Byeon, I.J., Yongkiettrakul, S. & Tsai, M.D. Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J. Mol. Biol. 314, 577–588 (2001).

    CAS  PubMed  Google Scholar 

  27. Skurat, A.V. & Roach, P.J. Phosphorylation of sites 3a and 3b (Ser640 and Ser644) in the control of rabbit muscle glycogen synthase. J. Biol. Chem. 270, 12491–12497 (1995).

    CAS  PubMed  Google Scholar 

  28. Wang, P. et al. II. Structure and specificity of the interaction between the FHA2 domain of Rad53 and phosphotyrosyl peptides. J. Mol. Biol. 302, 927–940 (2000).

    CAS  PubMed  Google Scholar 

  29. Mahajan, A. et al. FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J. Am. Chem. Soc. published online 30 September 2005 (10.1021/ja054538m).

  30. Clore, G.M. & Gronenborn, A.M. Determining the structures of large proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34 (1998).

    CAS  PubMed  Google Scholar 

  31. Bax, A. & Grzesiek, S. Methodological advances in protein NMR. Acc. Chem. Res. 26, 131–138 (1993).

    CAS  Google Scholar 

  32. Lee, W., Revington, M.J., Arrowsmith, C. & Kay, L.E. A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett. 350, 87–90 (1994).

    CAS  PubMed  Google Scholar 

  33. Ikura, M. & Bax, A. Isotope-filtered 2D NMR of a protein–peptide complex: study of a skeletal muscle myosin light chain kinase fragment bound to calmodulin. J. Am. Chem. Soc. 114, 2433–2440 (1992).

    CAS  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  35. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M.A. Common-sense approach to peak picking in 2-dimensional, 3-dimensional, and 4-dimensional spectra using automatic computer-analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  36. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302 (1999).

    CAS  PubMed  Google Scholar 

  37. Bax, A. et al. Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239, 79–105 (1994).

    CAS  PubMed  Google Scholar 

  38. Ottiger, M., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378 (1998).

    CAS  PubMed  Google Scholar 

  39. Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The XPLOR-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    CAS  PubMed  Google Scholar 

  40. Brünger, A.T. X-PLOR: a System for X-ray Crystallography and NMR, xvii, 382 (Yale University Press, New Haven, Connecticut, 1992).

    Google Scholar 

  41. Koradi, R., Billeter, M. & Wuthrich, K. MolMol: a program for display and analysis of macromolecular structures. J. Mol. Graph 14, 29–32, 51–55 (1996).

    Google Scholar 

  42. Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. Yoneda (Osaka University, Osaka, Japan) for providing the hNIFK gene. This work was supported by NIH grants CA87031 and CA69472, by the Genomics Research Center, Taiwan (M.-D.T.) and the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases, and in part by the Intramural AIDS Targeted Antiviral Program of the Office of the Director (A.M.G.). We thank D. Garrett and F. Delaglio for software, J. Baber for technical support, the MS and Proteomics Facility of OSU for MS analyses and D. Vandre of OSU for help in growing HeLa cells.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angela M Gronenborn or Ming-Daw Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Phosphorylation by cell lysate supports biological relevance. (PDF 220 kb)

Supplementary Fig. 2

Binding of hNIFK(226-269) to Ki67FHA probed by 31P NMR spectroscopy. (PDF 57 kb)

Supplementary Fig. 3

Titration of Ki67FHA with the hNIFK(260-266) heptapeptide. (PDF 78 kb)

Supplementary Table 1

Influence of proline residues on the phosphorylation of hNIFK(226-269). (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byeon, IJ., Li, H., Song, H. et al. Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 12, 987–993 (2005). https://doi.org/10.1038/nsmb1008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing