Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New functions for an ancient domain

Macrodomains function as binding modules for metabolites of NAD+, including poly(ADP-ribose). Three new studies explore how binding of poly(ADP-ribose) by the macrodomains of histone variant macroH2A1.1 and the ATP-dependent chromatin-remodeling protein ALC1 (also called CHD1L) leads to the modulation of chromatin structure, regulating nuclear functions such as DNA-damage detection and repair.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Macrodomains bind metabolites of NAD+.
Figure 2: Macrodomain-containing proteins in humans.
Figure 3: Macrodomains are ancient and highly conserved structural domains that bind metabolites of NAD+.

References

  1. Ladurner, A.G. Mol. Cell 12, 1–3 (2003).

    CAS  Article  PubMed  Google Scholar 

  2. Pehrson, J.R. & Fuji, R.N. Nucleic Acids Res. 26, 2837–2842 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Karras, G.I. et al. EMBO J. 24, 1911–1920 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A.G. Nat. Struct. Mol. Biol. 12, 624–625 (2005).

    CAS  Article  PubMed  Google Scholar 

  5. Neuvonen, M. & Ahola, T. J. Mol. Biol. 385, 212–225 (2009).

    CAS  Article  PubMed  Google Scholar 

  6. Hakme, A., Wong, H.K., Dantzer, F. & Schreiber, V. EMBO Rep. 9, 1094–1100 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Kim, M.Y., Zhang, T. & Kraus, W.L. Genes Dev. 19, 1951–1967 (2005).

    CAS  Article  PubMed  Google Scholar 

  8. Timinszky, G. et al. Nat. Struct. Mol. Biol. 16, 923–929 (2009).

    CAS  Article  PubMed  Google Scholar 

  9. Gottschalk, A.J. et al. Proc. Natl. Acad. Sci. USA, published online doi:10.1073/pnas.0906920106 (6 August 2009).

  10. Ahel, D. et al. Science, published online doi: 10.1126/science.1177321 (6 August 2009).

  11. Pehrson, J.R. & Fried, V.A. Science 257, 1398–1400 (1992).

    CAS  Article  PubMed  Google Scholar 

  12. Allen, M.D., Buckle, A.M., Cordell, S.C., Lowe, J. & Bycroft, M. J. Mol. Biol. 330, 503–511 (2003).

    CAS  Article  PubMed  Google Scholar 

  13. Martzen, M.R. et al. Science 286, 1153–1155 (1999).

    CAS  Article  PubMed  Google Scholar 

  14. Ame, J.C., Spenlehauer, C. & de Murcia, G. Bioessays 26, 882–893 (2004).

    CAS  Article  PubMed  Google Scholar 

  15. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T. & Kraus, W.L. Cell 119, 803–814 (2004).

    CAS  Article  PubMed  Google Scholar 

  16. Krishnakumar, R. et al. Science 319, 819–821 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. Kraus, W.L. Curr. Opin. Cell Biol. 20, 294–302 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Ahel, I. et al. Nature 451, 81–85 (2008).

    CAS  Article  PubMed  Google Scholar 

  19. Gagne, J.P. et al. Nucleic Acids Res. 36, 6959–6976 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Pleschke, J.M., Kleczkowska, H.E., Strohm, M. & Althaus, F.R. J. Biol. Chem. 275, 40974–40980 (2000).

    CAS  Article  PubMed  Google Scholar 

  21. Rulten, S.L., Cortes-Ledesma, F., Guo, L., Iles, N.J. & Caldecott, K.W. Mol. Cell. Biol. 28, 4620–4628 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Nusinow, D.A. et al. J. Biol. Chem. 282, 12851–12859 (2007).

    CAS  Article  PubMed  Google Scholar 

  23. Ouararhni, K. et al. Genes Dev. 20, 3324–3336 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Doyen, C.M. et al. Mol. Cell. Biol. 26, 1156–1164 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Angelov, D. et al. Mol. Cell 11, 1033–1041 (2003).

    CAS  Article  PubMed  Google Scholar 

  26. Agelopoulos, M. & Thanos, D. EMBO J. 25, 4843–4853 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Wacker, D.A. et al. Mol. Cell. Biol. 27, 7475–7485 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Cohen-Armon, M. et al. Mol. Cell 25, 297–308 (2007).

    CAS  Article  PubMed  Google Scholar 

  29. Changolkar, L.N. et al. Mol. Cell. Biol. 27, 2758–2764 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Costanzi, C. & Pehrson, J.R. J. Biol. Chem. 276, 21776–21784 (2001).

    CAS  Article  PubMed  Google Scholar 

  31. Pehrson, J.R., Costanzi, C. & Dharia, C. J. Cell. Biochem. 65, 107–113 (1997).

    CAS  Article  PubMed  Google Scholar 

  32. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Nucleic Acids Res. 34, 2887–2905 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank C. Danko for assistance with the bioinformatics analysis of the macrodomain-containing proteins (Fig. 2), and N. Hah and J. Seckute for assistance with rendering the X-ray crystal structures (Fig. 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Lee Kraus.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kraus, W. New functions for an ancient domain. Nat Struct Mol Biol 16, 904–907 (2009). https://doi.org/10.1038/nsmb0909-904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0909-904

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing