Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Toward a unified theory for repeat expansions

Two studies now explain why triplet DNA repeats tend to expand in the human genome, causing such severe hereditary neurological disorders as myotonic dystrophy and Huntington disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Slippage of repeat-containing DNA strands during DNA synthesis can lead to either expansions or contractions when slip-outs are in the nascent or template DNA strand, respectively.
Figure 2: Replication model for repeat expansions in dividing cells.
Figure 3: Repair model for repeat expansions in nondividing cells.

References

  1. Mirkin, S.M. Chemtracts Biochem. Mol. Biol. 17, 639–662 (2004).

    CAS  Google Scholar 

  2. Kang, S., Jaworski, A., Ohshima, K. & Wells, R.D. Nat. Genet. 10, 213–218 (1995).

    Article  CAS  Google Scholar 

  3. Ashley, C. Jr. & Warren, S.T. Annu. Rev. Genet. 29, 703–728 (1995).

    Article  CAS  Google Scholar 

  4. Owen, B.A.L. et al. Nat. Struct. Mol. Biol. 12, 662–670 (2005).

    Google Scholar 

  5. Panigrahi, G.B., Lau, R., Montgomery, E.S., Leonard, M.R. & Pearson, C.E. Nat. Struct. Mol. Biol. 12, 654–661 (2005).

    Article  CAS  Google Scholar 

  6. Acharya, S. et al. Proc. Natl. Acad. Sci. USA 93, 13629–13634 (1996).

    Article  CAS  Google Scholar 

  7. Manley, K., Shirley, T.L., Flaherty, F. & Messer, A. Nat. Genet. 23, 471–473 (1999).

    Article  CAS  Google Scholar 

  8. Savouret, C. et al. Mol. Cell. Biol. 24, 629–637 (2004).

    Article  CAS  Google Scholar 

  9. van den Broek, W.J. et al. Hum. Mol. Genet. 11, 191–198 (2002).

    Article  CAS  Google Scholar 

  10. Kovtun, I.V. & McMurray, C.T. Nat. Genet. 27, 407–411 (2001).

    Article  CAS  Google Scholar 

  11. Pearson, C.E., Ewel, A., Acharya, S., Fishel, R.A. & Sinden, R.R. Hum. Mol. Genet. 6, 1117–1123 (1997).

    Article  CAS  Google Scholar 

  12. Drotschmann, K., Yang, W. & Kunkel, T.A. DNA Repair (Amst.) 1, 743–753 (2002).

    Article  CAS  Google Scholar 

  13. Pearson, C.E. Trends Mol. Med. 9, 490–495 (2003).

    Article  CAS  Google Scholar 

  14. Krasilnikova, M.M. & Mirkin, S.M. Mol. Cell. Biol. 24, 2286–2295 (2004).

    Article  CAS  Google Scholar 

  15. Bhattacharyya, S. & Lahue, R.S. Mol. Cell. Biol. 24, 7324–7330 (2004).

    Article  CAS  Google Scholar 

  16. Modrich, P. J. Biol. Chem. 272, 24727–24730 (1997).

    Article  CAS  Google Scholar 

  17. Thornton, C.A., Johnson, K. & Moxley, R.T. III. Ann. Neurol. 35, 104–107 (1994).

    Article  CAS  Google Scholar 

  18. Kennedy, L. et al. Hum. Mol. Genet. 12, 3359–3367 (2003).

    Article  CAS  Google Scholar 

  19. Liu, Y., Kao, H.I. & Bambara, R.A. Annu. Rev. Biochem. 73, 589–615 (2004).

    Article  CAS  Google Scholar 

  20. Spiro, C. et al. Mol. Cell 4, 1079–1085 (1999).

    Article  CAS  Google Scholar 

  21. Henricksen, L.A., Tom, S., Liu, Y. & Bambara, R.A. J. Biol. Chem. 275, 16420–16427 (2000).

    Article  CAS  Google Scholar 

  22. Wheeler, V.C. et al. Hum. Mol. Genet. 12, 273–281 (2003).

    Article  CAS  Google Scholar 

  23. Rolfsmeier, M.L., Dixon, M.J. & Lahue, R.S. Mol. Cell 6, 1501–1507 (2000).

    Article  CAS  Google Scholar 

  24. Strand, M., Prolla, T.A., Liskay, R.M. & Petes, T.D. Nature 365, 274–276 (1993).

    Article  CAS  Google Scholar 

  25. Jakupciak, J.P. & Wells, R.D. IUBMB Life 50, 355–359 (2000).

    Article  CAS  Google Scholar 

  26. Richard, G.F. & Paques, F. EMBO Rep. 1, 122–126 (2000).

    Article  CAS  Google Scholar 

  27. Kunst, C.B. & Warren, S.T. Cell 77, 853–861 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank K. Mirkin for her constructive criticism. U.S. National Institute of General Medical Sciences grant GM 60987 supported my studies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirkin, S. Toward a unified theory for repeat expansions. Nat Struct Mol Biol 12, 635–637 (2005). https://doi.org/10.1038/nsmb0805-635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0805-635

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing