Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unraveling the paradoxes of plant hormone signaling integration

Abstract

Plant hormones play a major role in plant growth and development. They affect similar processes but, paradoxically, their signaling pathways act nonredundantly. Hormone signals are integrated at the gene-network level rather than by cross-talk during signal transduction. In contrast to hormone-hormone integration, recent data suggest that light and plant hormone pathways share common signaling components, which allows photoreceptors to influence the growth program. We propose a role for the plant hormone auxin as an integrator of the activities of multiple plant hormones to control plant growth in response to the environment.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Phytohormone structures and functional interactions.
Figure 2: Tissue-specific action of hormones in the root.
Figure 3: Signal integration during the shade-avoidance response.

References

  1. Santner, A. & Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071–1078 (2009).

    CAS  Article  PubMed  Google Scholar 

  2. Mundy, J., Nielsen, H.B. & Brodersen, P. Crosstalk. Trends Plant Sci. 11, 63–64 (2006).

    CAS  Article  PubMed  Google Scholar 

  3. Nemhauser, J.L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    CAS  Article  PubMed  Google Scholar 

  4. Vert, G., Walcher, C.L., Chory, J. & Nemhauser, J.L. Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. USA 105, 9829–9834 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Nemhauser, J.L., Mockler, T.C. & Chory, J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2, E258 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ubeda-Tomás, S. et al. Root growth in Arabidopsis requires gibberellin/DELLA signalling in the endovdermis. Nat. Cell Biol. 10, 625–628 (2008).

    Article  PubMed  Google Scholar 

  7. Ubeda-Tomás, S. et al. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19, 1194–1199 (2009).

    Article  PubMed  Google Scholar 

  8. Dello Ioio, R. et al. Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr. Biol. 17, 678–682 (2007).

    CAS  Article  PubMed  Google Scholar 

  9. Savaldi-Goldstein, S., Peto, C. & Chory, J. The epidermis both drives and restricts plant shoot growth. Nature 446, 199–202 (2007).

    CAS  Article  PubMed  Google Scholar 

  10. Dello Ioio, R. et al. A genetic framework for the control of cell division and differentiation in the root meristem. Science 322, 1380–1384 (2008).

    CAS  Article  PubMed  Google Scholar 

  11. Swarup, R. et al. Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19, 2186–2196 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Růzicka, K. et al. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19, 2197–2212 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stepanova, A.N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    CAS  Article  PubMed  Google Scholar 

  14. Stepanova, A.N., Yun, J., Likhacheva, A.V. & Alonso, J.M. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19, 2169–2185 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Tsuchisaka, A. & Theologis, A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982–3000 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Ballaré, C.L. Illuminated behaviour: phytochrome as a key regulator of light foraging and plant anti-herbivore defence. Plant Cell Environ. 32, 713–725 (2009).

    Article  PubMed  Google Scholar 

  17. Lorrain, S., Allen, T., Duek, P.D., Whitelam, G.C. & Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53, 312–323 (2008).

    CAS  Article  PubMed  Google Scholar 

  18. Tao, Y. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164–176 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Carabelli, M. et al. Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev. 21, 1863–1868 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Frigerio, M. et al. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 142, 553–563 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Sessa, G. et al. A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev. 19, 2811–2815 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O. & Fankhauser, C. Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J. 28, 3893–3902 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Achard, P. et al. DELLAs contribute to plant photomorphogenesis. Plant Physiol. 143, 1163–1172 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    CAS  Article  PubMed  Google Scholar 

  25. Djakovic-Petrovic, T., de Wit, M., Voesenek, L.A.C.J. & Pierik, R. DELLA protein function in growth responses to canopy signals. Plant J. 51, 117–126 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. Koini, M.A. et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr. Biol. 19, 408–413 (2009).

    CAS  Article  PubMed  Google Scholar 

  27. Nozue, K. et al. Rhythmic growth explained by coincidence between internal and external cues. Nature 448, 358–361 (2007).

    CAS  Article  PubMed  Google Scholar 

  28. Michael, T.P. et al. A morning-specific phytohormone gene expression program underlying rhythmic plant growth. PLoS Biol. 6, e225 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Chaudhuri, B. et al. Protonophore- and pH-insensitive glucose and sucrose accumulation detected by FRET nanosensors in Arabidopsis root tips. Plant J. 56, 948–962 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Kaiserli, M. Dreux, U. Pedmale, B. Cole and G. Vert for discussion and comments on this review. Y.J. is supported by a long-term fellowship from the European Molecular Biology Organization and from the Marc and Eva Stern Foundation. J.C. is an investigator of the Howard Hughes Medical Institute. Our work on plant hormones is also supported by grants from the US National Institutes of Health and the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Chory.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jaillais, Y., Chory, J. Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17, 642–645 (2010). https://doi.org/10.1038/nsmb0610-642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0610-642

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing