Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation

Abstract

Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27 to mark genes for repression. We measured the dynamics of PRC2 binding on recombinant chromatin and free DNA at the single-molecule level using total internal reflection fluorescence (TIRF) microscopy. PRC2 preferentially binds free DNA with multisecond residence time and midnanomolar affinity. PHF1, a PRC2 accessory protein of the Polycomblike family, extends PRC2 residence time on DNA and chromatin. Crystallographic and functional studies reveal that Polycomblike proteins contain a winged-helix domain that binds DNA in a sequence-nonspecific fashion. DNA binding by this winged-helix domain accounts for the prolonged residence time of PHF1–PRC2 on chromatin and makes it a more efficient H3K27 methyltranferase than PRC2 alone. Together, these studies establish that interactions with DNA provide the predominant binding affinity of PRC2 for chromatin. Moreover, they reveal the molecular basis for how Polycomblike proteins stabilize PRC2 on chromatin and stimulate its activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PHF1 prolongs the residence time of PRC2 on chromatin and DNA.
Figure 2: High-affinity binding of PRC2 to DNA is enhanced by PHF1.
Figure 3: Structure of the Pcl PHD2 WH domain.
Figure 4: The Pcl and PHF1 WH domains bind dsDNA.
Figure 5: DNA binding by PHF1 extends PRC2 residence time on chromatin and permits more efficient H3K27 methylation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  2. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    CAS  PubMed  Google Scholar 

  3. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Müller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    PubMed  Google Scholar 

  5. Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Min, J., Zhang, Y. & Xu, R.-M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pengelly, A.R., Copur, Ö., Jäckle, H., Herzig, A. & Müller, J. A histone mutant reproduces the phenotype caused by loss of histone-modifying factor Polycomb. Science 339, 698–699 (2013).

    CAS  PubMed  Google Scholar 

  8. McKay, D.J. et al. Interrogating the function of metazoan histones using engineered gene clusters. Dev. Cell 32, 373–386 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  10. Papp, B. & Müller, J. Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041–2054 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwartz, Y.B. et al. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat. Genet. 38, 700–705 (2006).

    CAS  PubMed  Google Scholar 

  12. Nekrasov, M. et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. EMBO J. 26, 4078–4088 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, R. et al. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol. Cell. Biol. 28, 1862–1872 (2008).

    CAS  PubMed  Google Scholar 

  14. Sarma, K., Margueron, R., Ivanov, A., Pirrotta, V. & Reinberg, D. Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol. Cell. Biol. 28, 2718–2731 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Duncan, I.M. Polycomblike: a gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics 102, 49–70 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Savla, U., Benes, J., Zhang, J. & Jones, R.S. Recruitment of Drosophila Polycomb-group proteins by Polycomblike, a component of a novel protein complex in larvae. Development 135, 813–817 (2008).

    CAS  PubMed  Google Scholar 

  17. Walker, E. et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 6, 153–166 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Casanova, M. et al. Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138, 1471–1482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hunkapiller, J. et al. Polycomb-like 3 promotes polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal. PLoS Genet. 8, e1002576 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Connell, S. et al. Polycomblike PHD fingers mediate conserved interaction with enhancer of zeste protein. J. Biol. Chem. 276, 43065–43073 (2001).

    CAS  PubMed  Google Scholar 

  21. Tie, F., Prasad-Sinha, J., Birve, A., Rasmuson-Lestander, A. & Harte, P.J. A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3. Mol. Cell. Biol. 23, 3352–3362 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Justin, N. et al. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nat. Commun. 7, 11316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmitges, F.W. et al. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol. Cell 42, 330–341 (2011).

    CAS  PubMed  Google Scholar 

  24. Margueron, R. et al. Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiao, L. & Liu, X. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350, aac4383 (2015).

    PubMed  PubMed Central  Google Scholar 

  26. Kilic, S., Bachmann, A.L., Bryan, L.C. & Fierz, B. Multivalency governs HP1α association dynamics with the silent chromatin state. Nat. Commun. 6, 7313 (2015).

    CAS  PubMed  Google Scholar 

  27. Friberg, A., Oddone, A., Klymenko, T., Müller, J. & Sattler, M. Structure of an atypical Tudor domain in the Drosophila Polycomblike protein. Protein Sci. 19, 1906–1916 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Musselman, C.A. et al. Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat. Struct. Mol. Biol. 19, 1266–1272 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai, L. et al. An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol. Cell 49, 571–582 (2013).

    CAS  PubMed  Google Scholar 

  30. Ballaré, C. et al. Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat. Struct. Mol. Biol. 19, 1257–1265 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    PubMed  PubMed Central  Google Scholar 

  32. Chen, Y. et al. Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding. EMBO Rep. 12, 797–803 (2011).

    PubMed  PubMed Central  Google Scholar 

  33. Sarvan, S. et al. Crystal structure of the trithorax group protein ASH2L reveals a forkhead-like DNA binding domain. Nat. Struct. Mol. Biol. 18, 857–859 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Clark, K.L., Halay, E.D., Lai, E. & Burley, S.K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    CAS  PubMed  Google Scholar 

  35. Brent, M.M., Anand, R. & Marmorstein, R. Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure 16, 1407–1416 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, X. et al. Molecular analysis of PRC2 recruitment to DNA in chromatin and its inhibition by RNA. Nat. Struct. Mol. Biol. http://dx.doi.org/10.1038/nsmb.3487 (2017).

  37. Nekrasov, M., Wild, B. & Müller, J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 6, 348–353 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rai, A.N. et al. Elements of the polycomb repressor SU(Z)12 needed for histone H3-K27 methylation, the interface with E(Z), and in vivo function. Mol. Cell. Biol. 33, 4844–4856 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, H., Kang, K. & Kim, J. AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res. 37, 2940–2950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    PubMed  PubMed Central  Google Scholar 

  41. Grijzenhout, A. et al. Functional analysis of AEBP2, a PRC2 Polycomb protein, reveals a Trithorax phenotype in embryonic development and in ESCs. Development 143, 2716–2723 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Soto, M.C., Chou, T.B. & Bender, W. Comparison of germline mosaics of genes in the Polycomb group of Drosophila melanogaster. Genetics 140, 231–243 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Morisaki, T., Müller, W.G., Golob, N., Mazza, D. & McNally, J.G. Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat. Commun. 5, 4456 (2014).

    CAS  PubMed  Google Scholar 

  44. Zhen, C.Y. et al. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. eLife 5, e17667 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Swinstead, E.E. et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165, 593–605 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sneeringer, C.J. et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc. Natl. Acad. Sci. USA 107, 20980–20985 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Cuvier, O. & Fierz, B. Dynamic chromatin technologies: from individual molecules to epigenomic regulation in cells. Nat. Rev. Genet. 18, 457–472 (2017).

    CAS  PubMed  Google Scholar 

  48. Yuan, W. et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J. Biol. Chem. 286, 7983–7989 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Young, N.L. et al. High throughput characterization of combinatorial histone codes. Mol. Cell. Proteomics 8, 2266–2284 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gaydos, L.J., Rechtsteiner, A., Egelhofer, T.A., Carroll, C.R. & Strome, S. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep. 2, 1169–1177 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Peters, A.H.F.M. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    CAS  PubMed  Google Scholar 

  52. Ebert, A. et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev. 18, 2973–2983 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, H. et al. Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kahn, T.G., Schwartz, Y.B., Dellino, G.I. & Pirrotta, V. Polycomb complexes and the propagation of the methylation mark at the Drosophilaubx gene. J. Biol. Chem. 281, 29064–29075 (2006).

    CAS  PubMed  Google Scholar 

  55. Mito, Y., Henikoff, J.G. & Henikoff, S. Histone replacement marks the boundaries of cis-regulatory domains. Science 315, 1408–1411 (2007).

    CAS  PubMed  Google Scholar 

  56. Deal, R.B., Henikoff, J.G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Riising, E.M. et al. Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol. Cell 55, 347–360 (2014).

    CAS  PubMed  Google Scholar 

  58. Wang, L. et al. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004).

    CAS  PubMed  Google Scholar 

  59. Frey, F. et al. Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. Genes Dev. 30, 1116–1127 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kalb, R. et al. Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. Nat. Struct. Mol. Biol. 21, 569–571 (2014).

    CAS  PubMed  Google Scholar 

  61. Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl. Acad. Sci. USA 102, 15815–15820 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    CAS  PubMed  Google Scholar 

  63. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    CAS  PubMed  Google Scholar 

  64. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS  PubMed  Google Scholar 

  65. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed  PubMed Central  Google Scholar 

  66. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Terwilliger, T.C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D Biol. Crystallogr. 65, 582–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Afonine, P.V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the MPI Biochemistry Facility and the Crystallization Facility for support with the biophysical and structural experiments and the beamline scientists at the Swiss Light Source for excellent assistance with data collection. We thank T. Cech and his lab members X. Wang and R.D. Paucek (University of Colorado Boulder) for sharing unpublished data and discussions. We thank S. Kilic and M. Tobler for reagents. This work was supported by the European Commission Seventh Framework Program 4DCellFate (grant number 277899), the Max Planck Society (J.M.), the Swiss National Science Foundation (grant number 31003A_173169) and EPFL (B.F.).

Author information

Authors and Affiliations

Authors

Contributions

J.C. and J.M. conceived the project. J.C., C.B., B.F. and J.M. designed the experiments. J.C. performed protein purification, biophysical experiments, crystallization and HMTase assays. J.C. and A.L.B. performed smTIRFM. J.C., A.L.B., C.B., B.F. and J.M. discussed and interpreted the data. J.C., B.F. and J.M. wrote the manuscript. K.T. provided technical support.

Corresponding authors

Correspondence to Beat Fierz or Jürg Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Quality assessment of reagents and conditions used for smTIRFM

(a) Gel filtration profile of PHF1-PRC2 on a Superose6 column with absorption at 280 nm (A280) and at 260 nm (A260). Below, elution fractions from the gel filtration peak, separated on a 12% polyacrylamide-SDS gel and visualized by coomassie staining.

(b) DY-547 labelling efficiency (%) of PRC2 complexes

(c) Left: scheme of chromatin array construct. Right: 12-mer chromatin arrays where digested with ScaI, separated on a 5% native TBE polyacrylamide gel and analysed by GelRed staining (left) and detection of Atto647N fluorescence emission (right). Numbers in parentheses: nucleosome positions, MN: mononucleosomes, DNA: free DNA released from array digestion, buffer DNA/buffer MNs: octamer buffer DNA and MNs formed on buffer DNA. Note that MN(1) carries an extended DNA linker and is labeled with a Atto647N dye. Full chromatin occupancy is judged by the absence of free DNA after ScaI digestion.

(d) Photobleaching kinetics of DY-547-labelled PRC2 during laser irradiation at different intensities (10 W/cm2, 20 W/cm2, 40 W/cm2 and 70 W/cm2). At 40 W/cm2 (experimental conditions), the fluorophore bleaching time constant (τbleach) is 18 s.

(e) Left: cumulative histogram of tdark for PRC2, an exponential fit yields λon, from which kon is calculated. Right: association rate constants kon for indicated PRC2 complexes on chromatin arrays. Symbols: Individual experimental results, N = 3 replicates for all PRC2 complexes (independent experiments), error bars: s.d., For the fit values, see Table 1.

Supplementary Figure 2 Quality assessment of PRC2 preparations and DNA binding analysis of PRC2 by MST

(a) PRC2, PHF1-PRC2, PHF1C-PRC2, PHF1WH>A-PRC2 and PHF1WH>E-PRC2 separated on a 13% polyacrylamide-SDS gel and visualized by coomassie staining. M: Molecular weight marker.

(b) Mononucleosomes used for EMSAs in Figure 2a, analyzed on a 0.7 % agarose gel and visualized by GelRed staining. M: DNA size marker.

(c) Binding of PRC2, PHF1-PRC2 and PHF1C -PRC2 to Flc-labelled PRE 11L probe (45nM), measured by MST. N = 3, error bars: s.d.. Curve fitting was performed using the Hill function; Kd values ± s.d. are indicated.

(d) MST analysis as in (c) but on a dsDNA probe PRE F5.

Supplementary Figure 3 The PHD2-WH domain is a conserved unit in Drosophila and human Polycomblike proteins

Alignment of PHD2-WH domain sequences of the proteins shown in Figure 3a. Secondary structure elements based on the PclPHD2-WH structure are indicated above the alignment. Blue boxes label the Zn-coordinating residues. Blue asterisks mark the residues Y514, M527 and W536 in PHD2 that are predicted to form an aromatic cage, but we note that Y514 in our crystal structure is not oriented correctly for cage formation, and F523 (also marked by a blue asterisk) is oriented in a way to obstruct access to the cage. Blue or orange circles show residues involved in the interaction between PHD2 and WH domain shown in Figure 3c; orange triangles mark residues mutated in PclPHD2-WHWH>A and in PHF1PHD2-WHWH>A/E.

Supplementary Figure 4 The PHD2-WH domain of Drosophila Pcl binds PRE DNA in a sequence non-specific fashion

(a) Schematic representation of the bxd PRE and the DNA probes, PRE01 to PRE21, used for binding assays with PclPHD2-WH protein in (c), that cover 210 bp of the bxd PRE core region. Lollipops indicate location of Pho protein binding sites that are required for normal PRC2 recruitment (Frey et al, 2016).

(b) DNA sequences of PRE01 to PRE20 probes.

(c) Binding of wild-type PclPHD2-WH to Flc-labelled PRE01 to PRE21 DNA probes (45 nM), measured by using fluorescence polarization assays. Kd values of the binding interaction of PclPHD2-WH with the different PRE probes are indicated in parentheses; binding assays with probes PRE12 and PRE13 were omitted from the analysis because these oligos failed to form stable DNA duplexes by annealing reaction.

Supplementary Figure 5 DNA binding by the PHF1 WH domain extends PRC2 residence time on DNA and mononucleosomes

(a) Time constants of the fast (τoff,1) and slow (τoff,2) dissociation process of indicated PRC2 complexes from the 601-DNA template. Numbers indicate % amplitude. Symbols: Individual experimental results, N = 3 replicates for PRC2 (independent experiments), N = 5 replicates for PRC2-PHF1 (independent experiments), N = 4 replicates for PRC2-PHF1C (independent experiments), N = 4 replicates for PRC2-PHF1WH>E (independent experiments), error bars: s.d., *: p<0.05, two-tailed student's t-test. For the fit values, see Table 1.

(b) Mononucleosomes used for smTIRFM analysis were run on a 5% native TBE polyacrylamide gel and analysed by GelRed staining (left) and detection of Atto647N fluorescence emission (right).

(c) τoff,1 and τoff,2 of PRC2 complexes on mononucleosomes. Numbers indicate % amplitude. Symbols: Individual experimental results, N = 3 replicates for PRC2 (independent experiments), N = 5 replicates for PRC2-PHF1 (independent experiments), N = 4 replicates for PRC2-PHF1C (independent experiments), N = 4 replicates for PRC2-PHF1WH>E (independent experiments), error bars: s.d., *: p<0.05, two-tailed student's t-test. For the fit values, see Table 1.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 959 kb)

Life Sciences Reporting Summary (PDF 130 kb)

Supplementary Data Set 1

Source data for Table 1 (XLSX 19 kb)

Supplementary Data Set 2

Full size scans of western blot membranes shown in Figure 5 (PDF 711 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Bachmann, A., Tauscher, K. et al. DNA binding by PHF1 prolongs PRC2 residence time on chromatin and thereby promotes H3K27 methylation. Nat Struct Mol Biol 24, 1039–1047 (2017). https://doi.org/10.1038/nsmb.3488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing