Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage

An Author Correction to this article was published on 04 June 2020

Abstract

The 40S small ribosomal subunit is cotranscriptionally assembled in the nucleolus as part of a large chaperone complex called the 90S preribosome or small-subunit processome. Here, we present the 3.2-Å-resolution structure of the Chaetomium thermophilum 90S preribosome, which allowed us to build atomic structures for 34 assembly factors, including the Mpp10 complex, Bms1, Utp14 and Utp18, and the complete U3 small nucleolar ribonucleoprotein. Moreover, we visualized the U3 RNA heteroduplexes with a 5′ external transcribed spacer (5′ ETS) and pre-18S RNA, and their stabilization by 90S factors. Overall, the structure explains how a highly intertwined network of assembly factors and pre-rRNA guide the sequential, independent folding of the individual pre-40S domains while the RNA regions forming the 40S active sites are kept immature. Finally, by identifying the unprocessed A1 cleavage site and the nearby Utp24 endonuclease, we suggest a proofreading model for regulated 5′-ETS separation and 90S–pre-40S transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM structure of the C. thermophilum 90S preribosome.
Figure 2: Structure and coordinating interactions of Utp18.
Figure 3: Structure of the 5′-ETS RNA.
Figure 4: Structure of pre-18S rRNA.
Figure 5: Molecular structure of the complete U3 snoRNP.
Figure 6: Long α-helical needles and additional 90S-preribosome factors.
Figure 7: Prerelease state, A1 cleavage and 90S-preribosome assembly.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Woolford, J.L. Jr. & Baserga, S.J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643–681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Henras, A.K., Plisson-Chastang, C., O'Donohue, M.F., Chakraborty, A. & Gleizes, P.E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Turowski, T.W. & Tollervey, D. Cotranscriptional events in eukaryotic ribosome synthesis. Wiley Interdiscip. Rev. RNA 6, 129–139 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Grandi, P. et al. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell 10, 105–115 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967–970 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Chaker-Margot, M., Hunziker, M., Barandun, J., Dill, B.D. & Klinge, S. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat. Struct. Mol. Biol. 22, 920–923 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Pérez-Fernández, J., Martín-Marcos, P. & Dosil, M. Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Res. 39, 8105–8121 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhang, L., Wu, C., Cai, G., Chen, S. & Ye, K. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast. Genes Dev. 30, 718–732 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Granneman, S., Petfalski, E., Swiatkowska, A. & Tollervey, D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J. 29, 2026–2036 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lebaron, S. et al. Rrp5 binding at multiple sites coordinates pre-rRNA processing and assembly. Mol. Cell 52, 707–719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, J., Lu, J., Feng, Y., Sun, M. & Ye, K. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme. PLoS Biol. 11, e1001669 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mougey, E.B. et al. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev. 7, 1609–1619 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Dutca, L.M., Gallagher, J.E. & Baserga, S.J. The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Res. 39, 5164–5180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Horn, D.M., Mason, S.L. & Karbstein, K. Rcl1 protein, a novel nuclease for 18 S ribosomal RNA production. J. Biol. Chem. 286, 34082–34087 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karbstein, K. & Doudna, J.A. GTP-dependent formation of a ribonucleoprotein subcomplex required for ribosome biogenesis. J. Mol. Biol. 356, 432–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Kornprobst, M. et al. Architecture of the 90S pre-ribosome: a structural view on the birth of the eukaryotic ribosome. Cell 166, 380–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Chaker-Margot, M., Barandun, J., Hunziker, M. & Klinge, S. Architecture of the yeast small subunit processome. Science 355, eaal1880 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Sun, Q. et al. Molecular architecture of the 90S small subunit pre-ribosome. eLife 6, e22086 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang, C. et al. Integrative structural analysis of the UTPB complex, an early assembly factor for eukaryotic small ribosomal subunits. Nucleic Acids Res. 44, 7475–7486 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hunziker, M. et al. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat. Commun. 7, 12090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pöll, G. et al. In vitro reconstitution of yeast tUTP/UTP A and UTP B subcomplexes provides new insights into their modular architecture. PLoS One 9, e114898 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tafforeau, L. et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol. Cell 51, 539–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Bleichert, F., Granneman, S., Osheim, Y.N., Beyer, A.L. & Baserga, S.J. The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation. Proc. Natl. Acad. Sci. USA 103, 9464–9469 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wells, G.R. et al. The PIN domain endonuclease Utp24 cleaves pre-ribosomal RNA at two coupled sites in yeast and humans. Nucleic Acids Res. 44, 5399–5409 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wimberly, B.T. et al. Structure of the 30S ribosomal subunit. Nature 407, 327–339 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Meyer, B. et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res. 39, 1526–1537 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, S.R., Keller, C.A., Szyk, A., Cannon, J.R. & Laronde-Leblanc, N.A. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res. 39, 2445–2457 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Ben-Shem, A., Jenner, L., Yusupova, G. & Yusupov, M. Crystal structure of the eukaryotic ribosome. Science 330, 1203–1209 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Lamanna, A.C. & Karbstein, K. An RNA conformational switch regulates pre-18S rRNA cleavage. J. Mol. Biol. 405, 3–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Granneman, S., Kudla, G., Petfalski, E. & Tollervey, D. Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs. Proc. Natl. Acad. Sci. USA 106, 9613–9618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Granneman, S. et al. The hU3-55K protein requires 15.5K binding to the box B/C motif as well as flanking RNA elements for its association with the U3 small nucleolar RNA in vitro. J. Biol. Chem. 277, 48490–48500 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, K. & Tollervey, D. Base pairing between U3 small nucleolar RNA and the 5′ end of 18S rRNA is required for pre-rRNA processing. Mol. Cell. Biol. 19, 6012–6019 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shah, B.N., Liu, X. & Correll, C.C. Imp3 unfolds stem structures in pre-rRNA and U3 snoRNA to form a duplex essential for small subunit processing. RNA 19, 1372–1383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marmier-Gourrier, N., Cléry, A., Schlotter, F., Senty-Ségault, V. & Branlant, C. A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA. Nucleic Acids Res. 39, 9731–9745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, P.C. & Thiele, D.J. Novel stress-responsive genes EMG1 and NOP14 encode conserved, interacting proteins required for 40S ribosome biogenesis. Mol. Biol. Cell 12, 3644–3657 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Milkereit, P. et al. A Noc complex specifically involved in the formation and nuclear export of ribosomal 40 S subunits. J. Biol. Chem. 278, 4072–4081 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Wegierski, T., Billy, E., Nasr, F. & Filipowicz, W. Bms1p, a G-domain-containing protein, associates with Rcl1p and is required for 18S rRNA biogenesis in yeast. RNA 7, 1254–1267 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Karbstein, K., Jonas, S. & Doudna, J.A. An essential GTPase promotes assembly of preribosomal RNA processing complexes. Mol. Cell 20, 633–643 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. McCaughan, U.M. et al. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases. Nat. Commun. 7, 11789 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Madru, C. et al. Chaperoning 5S RNA assembly. Genes Dev. 29, 1432–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, S., Lan, P., Liu, X. & Ye, K. Interaction between ribosome assembly factors Krr1 and Faf1 is essential for formation of small ribosomal subunit in yeast. J. Biol. Chem. 289, 22692–22703 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Strunk, B.S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lu, J., Sun, M. & Ye, K. Structural and functional analysis of Utp23, a yeast ribosome synthesis factor with degenerate PIN domain. RNA 19, 1815–1824 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thoms, M. et al. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162, 1029–1038 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Wu, S. et al. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes. Nature 534, 133–137 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barrio-Garcia, C. et al. Architecture of the Rix1-Rea1 checkpoint machinery during pre-60S-ribosome remodeling. Nat. Struct. Mol. Biol. 23, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Sardana, R. et al. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLoS Biol. 13, e1002083 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Segerstolpe, Å. et al. Multiple RNA interactions position Mrd1 at the site of the small subunit pseudoknot within the 90S pre-ribosome. Nucleic Acids Res. 41, 1178–1190 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kimanius, D., Forsberg, B.O., Scheres, S.H. & Lindahl, E. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. eLife 5, e18722 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Scheres, S.H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331, 730–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252–W258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goddard, T.D., Huang, C.C. & Ferrin, T.E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Popenda, M. et al. Automated 3D structure composition for large RNAs. Nucleic Acids Res. 40, e112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin, J. et al. Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature 469, 559–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Buchan, D.W., Minneci, F., Nugent, T.C., Bryson, K. & Jones, D.T. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 41, W349–W357 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Nicholls, R.A., Fischer, M., McNicholas, S. & Murshudov, G.N. Conformation-independent structural comparison of macromolecules with ProSMART. Acta Crystallogr. D Biol. Crystallogr. 70, 2487–2499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D Biol. Crystallogr. 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Fernández, I.S., Bai, X.C., Murshudov, G., Scheres, S.H. & Ramakrishnan, V. Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 157, 823–831 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Ungewickell, S. Rieder, S. Griesel and B. Jannack for excellent technical assistance. This work was supported by Deutsche Forschungsgemeinschaft (DFG) grants (HU363/10-5 and HU363/12-1 to E.H.; SFB646, GRK1721 and FOR1805 to R.B.). R.B. acknowledges support from the Center for Integrated Protein Science Munich (CiPS-M) and the European Research Council (Advanced Grant CRYOTRANSLATION). We thank the Leibniz-Rechenzentrum Munich (LRZ) for providing computational services and support.

Author information

Authors and Affiliations

Authors

Contributions

J.C., N.K., E.H. and R.B. designed the study. N.K. prepared and characterized the sample, and O.B. prepared the EM samples and performed the cryo-EM data collection. J.C. processed the cryo-EM data and built and refined the model. J.C., E.H. and R.B. analyzed and interpreted the structures. J.C., N.K., O.B., E.H. and R.B. wrote the manuscript.

Corresponding authors

Correspondence to Ed Hurt or Roland Beckmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Cryo-EM structure and model of the C. thermophilum 90S preribosome.

a, Gold standard FSC curve showing the average resolution of the 90S preribosome masked and unmasked (left). FSC curves of the refined model against the overall 3.2 Å map (red), the final model refined against one of the two half maps versus the same half map (FSCwork; green), and the model refined against one of the two half map versus the second half map (FSCfree; cyan) (middle). The orientation distribution of the projections is shown on right. b, Side view of the cryo-EM map of the 90S preribosome colored according to local resolution as calculated by ResMap. c, Two side views of the 90S preribosome model. The WD40 domain of Rrp9(PDB: 4J0X) was used as placeholder for the missing WD40 domains of UTP-A complex, UTP-B complex and Enp2. Utp20 could not be modeled and is shown as original electron density. d, Detail view of protein α-helix (left), β-sheet (middle) and RNA A-helix (right)

Supplementary Figure 2 Structures of nonribosomal biogenesis factors (part 1).

The components of UTP-A, UTP-B, U3 snoRNP, Mpp10 complex and Bms1 complex are shown as ribbons (upper row). The isolated complete density maps are shown in the same view colored according to the local resolution (middle row), and density snapshots from each biogenesis factor with molecular models are also shown (lower row).

Supplementary Figure 3 Structures of nonribosomal biogenesis factors (part 2).

Continued from Supplementary Figure 2, the detailed structures of the remaining individual biogenesis factors. Isolated electron density map and molecular models of the 35S rRNA and the U3 snoRNA are also shown. Boxes show the zoom on three RNA regions displaying h43 from the pre-18S region, H8 from the 5’ETS region and a k-turn from the U3 snoRNA.

Supplementary Figure 4 Interactions in UTP-A and UTP-B.

a, Overall structure of the UTP-A complex. Here, the WD40 domain of Rrp9 (PDB: 4J0X) represents the corresponding part of Utp4, Utp17 and the entire Utp8. The UTP-A oligomerization domain is represented by poly-alanine helices. b, Two views highlighting the location of the UTP-A complex in context of the 90S preribosome. c, Close-up view on the detailed interaction between the C-terminus of Utp17 and the N-terminus of Utp10. In agreement with the previously observed resistance of the complex to high salt, the interaction is mediated by hydrophobic residues from both proteins forming a hydrophobic interaction surface. d, Overall structure of the UTP-B complex. Here, four WD40 domains could not be unambiguously assigned, but according to their location, they likely belong to Utp12 and Utp13. e-f, The overall (e) and the close-up view (f) demonstrating the location of UTP-B complex in the context of 90S preribosome. To indicate the location of Utp12 and Utp13, also h44 of the pre-40S is highlighted. g, Close-up view on the interaction of Utp1 (ribbon) with Utp21 (surface).

Supplementary Figure 5 The structure of the pre-40S domains.

a-c, The overall structure of the pre-40S subunit domains within the 90S particle. Close-up are shown for the 5’ domain (a), the platform (b) and part of the head (c) of the pre-40S. All sub-domains of the pre-18S rRNA were colored according to Fig. 4. Note that ribosomal proteins (eS4, uS4, eS6, eS8, uS12 and eS24 for 5 ’Domain; eS1, eS7, uS8, uS11, uS15 for the platform; uS7, uS9 and eS28 for part of the head (h28-30 and h41-h43)) are already in their mature position and interact with the correct rRNA region. They were all fitted into the density. d, Close-up view on part of the 3’ Major domain (h31-h34) of 18S rRNA as represented by a low resolved electron density (shown in purple). In the proposed model, h31 would be located close to the unambiguously fit h30, and its location would be consistent with the closeby position of Emg1. e, View focusing on the location of the other part of the 3’ Major domain (h35-h40). Extra electron density for h35-h40 (purple) is located on top of the Emg1 dimer. Electron density for the 90S preribosome was low-pass filtered to 6 Å and filtered to 12 Å for the 3’ Major domain. f, The immature rRNA helix h16 is shown in color with mature state in grey. The position of h16 was based on superposition with the 5’Domain. g, h18 (left), h28 and h44 (right) are shown as model with density.

Supplementary Figure 6 Overall structure of the U3 snoRNP.

a, Ribbon model of the U3 snoRNP structure shown in electron density (transparent). In addition, four regions from 35S rRNA (Box A and BoxA’ of pre-18S rRNA, 5’- and 3’ hinge of 5’ETS) which hybridize with U3 snoRNA are shown. b, Close-up views on BoxA’, BoxA, BoxB/C, 5’Hinge, BoxC’/D and 3’Hinge duplex of the U3 snoRNA shown as sticks models and colored according to a. c, Model of the U3 snoRNA. d-e, The proteins of the U3 snoRNP coordinate both UTP-A and UTP-B complex (d) as well as other biogenesis factors like Utp3 and Fcf2 (e).

Supplementary Figure 7 Structures of Utp2 and Mpp10 complexes.

a, Extra density of Utp2-Noc4 cluster (pink) is located on the top surface of Utp15 and close to the Emg1 dimer. The density shows features characteristic for an α-helical HEAT repeat structure and thus is likely representing Noc4. The remaining triangular shaped density connecting with C-terminal helix of Utp2 and the Emg1 dimer likely represents Utp2. b, Close-up view on the interaction between Imp3 and Mpp10. Two helices of Imp3 form a hydrophobic surface and interact with Mpp10 (residues 608-639). Residues in this interface crucial for interaction are labeled. c, Close-up view on the interaction between Imp4 and Mpp10. The β-sheet of Imp4 forms a wide surface for Mpp10 residues 528-552, representing a mixture of hydrophobic and hydrogen bond interactions.

Supplementary Figure 8 The sequential binding model for the 90S preribosome assembly.

Structural analysis suggests dividing in 7 steps illustrated from left to right: Start with early 5’ETS Helix1-2 and UTP-A complex, via complete 5’ETS, 5’Domain, Central, 3’Major, 3’minor and ITS1.

Supplementary Figure 9 Structures of RNA-interacting WD40-domain proteins.

All assigned WD40 domain proteins in the 90S preribosome that interact with RNAs shown as ribbons. Basically, they can be divided into three clusters: Utp1-WD1, Utp1-WD2, Utp7, Utp17-WD1, Sof1 and Utp21-WD2 interact with RNA using their side surfaces; Utp4-WD1, Utp18 and Rrp9 interact with RNA using their top surfaces; Utp21-WD1 interact with RNA using its bottom surface. Based on this analysis, the WD40 domain represents an important RNA binder that can interact with RNA using multiple binding surfaces.

Supplementary Figure 10 Secondary-structure diagram of mature and immature 18S rRNA.

The immature 18S rRNA as observed in the 90S particle is shown in full scale and only the region around the pseudoknot is shown for mature 18S rRNA. Different sub-domains are color coded. The connecting sequences of 5’ETS, U3 snoRNA and ITS1 are shown by a dashed line.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Table 1 (PDF 3167 kb)

Life Sciences Reporting Summary (PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Kellner, N., Berninghausen, O. et al. 3.2-Å-resolution structure of the 90S preribosome before A1 pre-rRNA cleavage. Nat Struct Mol Biol 24, 954–964 (2017). https://doi.org/10.1038/nsmb.3476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing