Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Switching dynein motors on and off

Cytoplasmic dyneins transport cellular components from the periphery toward the center of the cell. By moving cargoes along microtubules, dyneins ensure proper cell division, regulate exchange of materials between organelles, and contribute to the internal organization of eukaryotic cells. Two recent studies show that, upon dimerization, cytoplasmic dyneins intrinsically adopt an autoinhibited configuration that can be relieved by other factors to precisely control motor activity and regulate dynein-based transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for cytoplasmic dynein regulation in the cell.

References

  1. Vallee, R.B., Williams, J.C., Varma, D. & Barnhart, L.E. J. Neurobiol. 58, 189–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Pazour, G.J., Dickert, B.L. & Witman, G.B. J. Cell Biol. 144, 473–481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. King, S.M. Composition and assembly of axonemal dyneins. in Dyneins: Structure, Biology and Disease (ed. King, S.M.) 209–243 (Academic Press, San Diego, California, USA, 2012).

    Google Scholar 

  4. Belyy, V. et al. Nat. Cell Biol. 18, 1018–1024 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markus, S.M., Punch, J.J. & Lee, W.L. Curr. Biol. 19, 196–205 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nicholas, M.P. et al. Nat. Commun. 6, 6206 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Torisawa, T. et al. Nat. Cell Biol. 16, 1118–1124 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Toropova, K., Mladenov, M. & Roberts, A.J. Nat. Struct. Mol. Biol. 24, 461–468 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, K. et al. Cell 169, 1303–1314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kozminski, K.G., Johnson, K.A., Forscher, P. & Rosenbaum, J.L. Proc. Natl. Acad. Sci. USA 90, 5519–5523 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cole, D.G. et al. Nature 366, 268–270 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Cole, D.G. et al. J. Cell Biol. 141, 993–1008 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nogales, E. Nat. Methods 13, 24–27 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chowdhury, S., Ketcham, S.A., Schroer, T.A. & Lander, G.C. Nat. Struct. Mol. Biol. 22, 345–347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang, Y. et al. Dev. Cell 30, 585–597 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, K.A. & Rosenbaum, J.L. J. Cell Biol. 119, 1605–1611 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Dentler, W.L. J. Cell Sci. 42, 207–220 (1980).

    CAS  PubMed  Google Scholar 

  18. Pedersen, L.B. et al. Curr. Biol. 15, 262–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Piao, T. et al. Proc. Natl. Acad. Sci. USA 106, 4713–4718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tammana, S.T.V., Tammana, D., Diener, D.R. & Rosenbaum, J. J. Cell Sci. 126, 5018–5029 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gray, R.S. et al. Nat. Cell Biol. 11, 1225–1232 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Das, A., Dickinson, D.J., Wood, C.C., Goldstein, B. & Slep, K.C. Mol. Biol. Cell 26, 4248–4264 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.P. is supported by the Max Planck Society and S.M.K. by grant GM051293 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaia Pigino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigino, G., King, S. Switching dynein motors on and off. Nat Struct Mol Biol 24, 557–559 (2017). https://doi.org/10.1038/nsmb.3429

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3429

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing