Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Separase–securin complex: a cunning way to control chromosome segregation

Separases are crucial cell cycle proteases that control the metaphase-to-anaphase transition by cleaving chromosomal cohesin rings. Two new high-resolution structures of separase bound by its inhibitory chaperone securin illustrate intriguing regulatory mechanisms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ribbon representations of the budding yeast S. cerevisiae separase–securin complex (top) and the nematode worm C. elegans complex (bottom).
Figure 2: Active site diagrams of separase in active and inactive configurations.

References

  1. 1

    Uhlmann, F., Lottspeich, F. & Nasmyth, K. Nature 400, 37–42 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Uhlmann, F., Wernic, D., Poupart, M.-A., Koonin, E.V. & Nasmyth, K. Cell 103, 375–386 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Waizenegger, I.C., Hauf, S., Meinke, A. & Peters, J.-M. Cell 103, 399–410 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Luo, S. & Tong, L. Nature 542, 255–259 (2017).

    CAS  Article  Google Scholar 

  5. 5

    Boland, A. et al. Nat. Struct. Mol. Biol. 24, 414–418 (2017).

    CAS  Article  Google Scholar 

  6. 6

    McGrew, J.T., Goetsch, L., Byers, B. & Baum, P. Mol. Biol. Cell 3, 1443–1454 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. & Yanagida, M. Cell 62, 913–925 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Cohen-Fix, O., Peters, J.-M., Kirschner, M.W. & Koshland, D. Genes Dev. 10, 3081–3093 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Funabiki, H. et al. Nature 381, 438–441 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Zou, H., McGarry, T.J., Bernal, T. & Kirschner, M.W. Science 285, 418–422 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Jensen, S., Segal, M., Clarke, D.J. & Reed, S.I. J. Cell Biol. 152, 27–40 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Hornig, N.C.D., Knowles, P.P., McDonald, N.Q. & Uhlmann, F. Curr. Biol. 12, 973–982 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Waizenegger, I., Giménez-Abián, J.F., Wernic, D. & Peters, J.-M. Curr. Biol. 12, 1368–1378 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Funabiki, H., Kumada, K. & Yanagida, M. EMBO J. 15, 6617–6628 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Stratmann, R. & Lehner, C.F. Cell 84, 25–35 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Nagao, K. & Yanagida, M. Genes Cells 11, 247–260 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Viadiu, H., Stemmann, O., Kirschner, M.W. & Walz, T. Nat. Struct. Mol. Biol. 12, 552–553 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Lin, Z., Luo, X. & Yu, H. Nature 532, 131–134 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Bachmann, G. et al. Open Biol. 6, 160032 (2016).

    Article  Google Scholar 

  20. 20

    Sullivan, M., Hornig, N.C.D., Porstmann, T. & Uhlmann, F. J. Biol. Chem. 279, 1191–1196 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. & Kirschner, M.W. Cell 107, 715–726 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Hornig, N.C.D. & Uhlmann, F. EMBO J. 23, 3144–3153 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Sun, Y. et al. Cell 137, 123–132 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Hellmuth, S. et al. Mol. Cell 58, 495–506 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Sullivan, M. & Uhlmann, F. Nat. Cell Biol. 5, 249–254 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Kudo, N.R. et al. Cell 126, 135–146 (2006).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Martin R Singleton or Frank Uhlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singleton, M., Uhlmann, F. Separase–securin complex: a cunning way to control chromosome segregation. Nat Struct Mol Biol 24, 337–339 (2017). https://doi.org/10.1038/nsmb.3393

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing