Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Separase–securin complex: a cunning way to control chromosome segregation

Separases are crucial cell cycle proteases that control the metaphase-to-anaphase transition by cleaving chromosomal cohesin rings. Two new high-resolution structures of separase bound by its inhibitory chaperone securin illustrate intriguing regulatory mechanisms.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon representations of the budding yeast S. cerevisiae separase–securin complex (top) and the nematode worm C. elegans complex (bottom).
Figure 2: Active site diagrams of separase in active and inactive configurations.

References

  1. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Nature 400, 37–42 (1999).

    Article  CAS  Google Scholar 

  2. Uhlmann, F., Wernic, D., Poupart, M.-A., Koonin, E.V. & Nasmyth, K. Cell 103, 375–386 (2000).

    Article  CAS  Google Scholar 

  3. Waizenegger, I.C., Hauf, S., Meinke, A. & Peters, J.-M. Cell 103, 399–410 (2000).

    Article  CAS  Google Scholar 

  4. Luo, S. & Tong, L. Nature 542, 255–259 (2017).

    Article  CAS  Google Scholar 

  5. Boland, A. et al. Nat. Struct. Mol. Biol. 24, 414–418 (2017).

    Article  CAS  Google Scholar 

  6. McGrew, J.T., Goetsch, L., Byers, B. & Baum, P. Mol. Biol. Cell 3, 1443–1454 (1992).

    Article  CAS  Google Scholar 

  7. Uzawa, S., Samejima, I., Hirano, T., Tanaka, K. & Yanagida, M. Cell 62, 913–925 (1990).

    Article  CAS  Google Scholar 

  8. Cohen-Fix, O., Peters, J.-M., Kirschner, M.W. & Koshland, D. Genes Dev. 10, 3081–3093 (1996).

    Article  CAS  Google Scholar 

  9. Funabiki, H. et al. Nature 381, 438–441 (1996).

    Article  CAS  Google Scholar 

  10. Zou, H., McGarry, T.J., Bernal, T. & Kirschner, M.W. Science 285, 418–422 (1999).

    Article  CAS  Google Scholar 

  11. Jensen, S., Segal, M., Clarke, D.J. & Reed, S.I. J. Cell Biol. 152, 27–40 (2001).

    Article  CAS  Google Scholar 

  12. Hornig, N.C.D., Knowles, P.P., McDonald, N.Q. & Uhlmann, F. Curr. Biol. 12, 973–982 (2002).

    Article  CAS  Google Scholar 

  13. Waizenegger, I., Giménez-Abián, J.F., Wernic, D. & Peters, J.-M. Curr. Biol. 12, 1368–1378 (2002).

    Article  CAS  Google Scholar 

  14. Funabiki, H., Kumada, K. & Yanagida, M. EMBO J. 15, 6617–6628 (1996).

    Article  CAS  Google Scholar 

  15. Stratmann, R. & Lehner, C.F. Cell 84, 25–35 (1996).

    Article  CAS  Google Scholar 

  16. Nagao, K. & Yanagida, M. Genes Cells 11, 247–260 (2006).

    Article  CAS  Google Scholar 

  17. Viadiu, H., Stemmann, O., Kirschner, M.W. & Walz, T. Nat. Struct. Mol. Biol. 12, 552–553 (2005).

    Article  CAS  Google Scholar 

  18. Lin, Z., Luo, X. & Yu, H. Nature 532, 131–134 (2016).

    Article  CAS  Google Scholar 

  19. Bachmann, G. et al. Open Biol. 6, 160032 (2016).

    Article  Google Scholar 

  20. Sullivan, M., Hornig, N.C.D., Porstmann, T. & Uhlmann, F. J. Biol. Chem. 279, 1191–1196 (2004).

    Article  CAS  Google Scholar 

  21. Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. & Kirschner, M.W. Cell 107, 715–726 (2001).

    Article  CAS  Google Scholar 

  22. Hornig, N.C.D. & Uhlmann, F. EMBO J. 23, 3144–3153 (2004).

    Article  CAS  Google Scholar 

  23. Sun, Y. et al. Cell 137, 123–132 (2009).

    Article  CAS  Google Scholar 

  24. Hellmuth, S. et al. Mol. Cell 58, 495–506 (2015).

    Article  CAS  Google Scholar 

  25. Sullivan, M. & Uhlmann, F. Nat. Cell Biol. 5, 249–254 (2003).

    Article  CAS  Google Scholar 

  26. Kudo, N.R. et al. Cell 126, 135–146 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin R Singleton or Frank Uhlmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singleton, M., Uhlmann, F. Separase–securin complex: a cunning way to control chromosome segregation. Nat Struct Mol Biol 24, 337–339 (2017). https://doi.org/10.1038/nsmb.3393

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing