Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic basis for the recognition of a misfolded protein by the molecular chaperone Hsp90

This article has been updated

Abstract

The critical toxic species in over 40 human diseases are misfolded proteins. Their interaction with molecular chaperones such as Hsp90, which preferentially interacts with metastable proteins, is essential for the blocking of disease progression. Here we used nuclear magnetic resonance (NMR) spectroscopy to determine the three-dimensional structure of the misfolded cytotoxic monomer of the amyloidogenic human protein transthyretin, which is characterized by the release of the C-terminal β-strand and perturbations of the A-B loop. The misfolded transthyretin monomer, but not the wild-type protein, binds to human Hsp90. In the bound state, the Hsp90 dimer predominantly populates an open conformation, and transthyretin retains its globular structure. The interaction surface for the transthyretin monomer comprises the N-terminal and middle domains of Hsp90 and overlaps with that of the Alzheimer's-disease-related protein tau. Taken together, the data suggest that Hsp90 uses a mechanism for the recognition of aggregation-prone proteins that is largely distinct from those of other Hsp90 clients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three-dimensional structure of the cytotoxic conformation of TTR.
Figure 2: The molecular chaperone Hsp90 binds to misfolded TTR.
Figure 3: The Hsp90 dimer is in an open conformation in the presence of M-TTR.
Figure 4: The metastable monomeric variant of TTR binds to the N-terminal and M domains of Hsp90.
Figure 5: TTR retains its globular structure in complex with Hsp90.
Figure 6: The intrinsically disordered protein tau and the toxic misfolded conformation of TTR share a common binding surface on Hsp90.

Similar content being viewed by others

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Referenced accessions

Biological Magnetic Resonance Data Bank

Protein Data Bank

Change history

  • 13 March 2017

    In the version of this article initially published online, there was an error in the y-axis label of Figure 1e. The error has been corrected in the print, PDF and HTML versions of this article.

References

  1. Haass, C. & Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Barral, J.M., Broadley, S.A., Schaffar, G. & Hartl, F.U. Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15, 17–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bukau, B., Weissman, J. & Horwich, A. Molecular chaperones and protein quality control. Cell 125, 443–451 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Mayer, M.P. Gymnastics of molecular chaperones. Mol. Cell 39, 321–331 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Hipp, M.S., Park, S.H. & Hartl, F.U. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 24, 506–514 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Landry, S.J. & Gierasch, L.M. Polypeptide interactions with molecular chaperones and their relationship to in vivo protein folding. Annu. Rev. Biophys. Biomol. Struct. 23, 645–669 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Lindberg, I. et al. Chaperones in neurodegeneration. J. Neurosci. 35, 13853–13859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schneider, C. et al. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90. Proc. Natl. Acad. Sci. USA 93, 14536–14541 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jakob, U., Lilie, H., Meyer, I. & Buchner, J. Transient interaction of Hsp90 with early unfolding intermediates of citrate synthase. Implications for heat shock in vivo. J. Biol. Chem. 270, 7288–7294 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Street, T.O., Lavery, L.A. & Agard, D.A. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol. Cell 42, 96–105 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dickey, C.A. et al. The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J. Clin. Invest. 117, 648–658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Echeverria, P.C. & Picard, D. Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim. Biophys. Acta 1803, 641–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Falsone, S.F., Kungl, A.J., Rek, A., Cappai, R. & Zangger, K. The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein α-synuclein. J. Biol. Chem. 284, 31190–31199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dekki, N. et al. Transthyretin binds to glucose-regulated proteins and is subjected to endocytosis by the pancreatic β-cell. Cell. Mol. Life Sci. 69, 1733–1743 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Karagöz, G.E. et al. Hsp90-Tau complex reveals molecular basis for specificity in chaperone action. Cell 156, 963–974 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benson, M.D. & Uemichi, T. Transthyretin amyloidosis. Amyloid 3, 44–56 (1996).

    Article  CAS  Google Scholar 

  18. Sato, T. et al. Endoplasmic reticulum quality control regulates the fate of transthyretin variants in the cell. EMBO J. 26, 2501–2512 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, J.J. et al. Endoplasmic reticulum proteostasis influences the oligomeric state of an amyloidogenic protein secreted from mammalian cells. Cell. Chem. Biol. 23, 1282–1293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Planté-Bordeneuve, V. & Said, G. Transthyretin related familial amyloid polyneuropathy. Curr. Opin. Neurol. 13, 569–573 (2000).

    Article  PubMed  Google Scholar 

  21. Connors, L.H., Lim, A., Prokaeva, T., Roskens, V.A. & Costello, C.E. Tabulation of human transthyretin (TTR) variants, 2003. Amyloid 10, 160–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Bekircan-Kurt, C.E., Güneş, N., Yılmaz, A., Erdem-Özdamar, S. & Tan, E. Three Turkish families with different transthyretin mutations. Neuromuscul. Disord. 25, 686–692 (2015).

    Article  PubMed  Google Scholar 

  23. Jiang, X. et al. An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Blake, C.C., Geisow, M.J., Swan, I.D., Rerat, C. & Rerat, B. Strjcture of human plasma prealbumin at 2-5 Å resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. J. Mol. Biol. 88, 1–12 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, S.M., Connelly, S., Fearns, C., Powers, E.T. & Kelly, J.W. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. J. Mol. Biol. 421, 185–203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reixach, N., Deechongkit, S., Jiang, X., Kelly, J.W. & Buxbaum, J.N. Tissue damage in the amyloidoses: transthyretin monomers and nonnative oligomers are the major cytotoxic species in tissue culture. Proc. Natl. Acad. Sci. USA 101, 2817–2822 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Quintas, A., Saraiva, M.J. & Brito, R.M. The tetrameric protein transthyretin dissociates to a non-native monomer in solution. A novel model for amyloidogenesis. J. Biol. Chem. 274, 32943–32949 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Lim, K.H. et al. Structural changes associated with transthyretin misfolding and amyloid formation revealed by solution and solid-state NMR. Biochemistry 55, 1941–1944 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Lim, K.H., Dyson, H.J., Kelly, J.W. & Wright, P.E. Localized structural fluctuations promote amyloidogenic conformations in transthyretin. J. Mol. Biol. 425, 977–988 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bourgault, S. et al. Mechanisms of transthyretin cardiomyocyte toxicity inhibition by resveratrol analogs. Biochem. Biophys. Res. Commun. 410, 707–713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neudecker, P. et al. Structure of an intermediate state in protein folding and aggregation. Science 336, 362–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Sreedhar, A.S., Kalmár, E., Csermely, P. & Shen, Y.F. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562, 11–15 (2004).

    Article  PubMed  Google Scholar 

  33. Park, S.J., Borin, B.N., Martinez-Yamout, M.A. & Dyson, H.J. The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nat. Struct. Mol. Biol. 18, 537–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hagn, F. et al. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat. Struct. Mol. Biol. 18, 1086–1093 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Lorenz, O.R. et al. Modulation of the Hsp90 chaperone cycle by a stringent client protein. Mol. Cell 53, 941–953 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Krukenberg, K.A., Förster, F., Rice, L.M., Sali, A. & Agard, D.A. Multiple conformations of E. coli Hsp90 in solution: insights into the conformational dynamics of Hsp90. Structure 16, 755–765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karagöz, G.E. et al. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc. Natl. Acad. Sci. USA 108, 580–585 (2011).

    Article  PubMed  Google Scholar 

  38. Rosenzweig, R. & Kay, L.E. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu. Rev. Biochem. 83, 291–315 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, W.M. et al. A pH-sensitive, colorful, lanthanide-chelating paramagnetic NMR probe. J. Am. Chem. Soc. 134, 17306–17313 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Keizers, P.H., Saragliadis, A., Hiruma, Y., Overhand, M. & Ubbink, M. Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J. Am. Chem. Soc. 130, 14802–14812 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Pintacuda, G., John, M., Su, X.C. & Otting, G. NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc. Chem. Res. 40, 206–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Keizers, P.H. & Ubbink, M. Paramagnetic tagging for protein structure and dynamics analysis. Prog. Nucl. Magn. Reson. Spectrosc. 58, 88–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Jackson, S.E. Hsp90: structure and function. Top. Curr. Chem. 328, 155–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Vaughan, C.K. et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol. Cell 23, 697–707 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chakraborty, R., Muchtar, E. & Gertz, M.A. Newer therapies for amyloid cardiomyopathy. Curr. Heart Fail. Rep. 13, 237–246 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Verba, K.A. et al. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352, 1542–1547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Meyer, P. et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 23, 511–519 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ali, M.M. et al. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–1017 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, M., Kadota, Y., Prodromou, C., Shirasu, K. & Pearl, L.H. Structural basis for assembly of Hsp90-Sgt1-CHORD protein complexes: implications for chaperoning of NLR innate immunity receptors. Mol. Cell 39, 269–281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Carman, A., Kishinevsky, S., Koren, J. III, Lou, W. & Chiosis, G. Chaperone-dependent neurodegeneration: a molecular perspective on therapeutic intervention. J. Alzheimers Dis. Parkinsonism 2013, 007 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Liu, K., Kelly, J.W. & Wemmer, D.E. Native state hydrogen exchange study of suppressor and pathogenic variants of transthyretin. J. Mol. Biol. 320, 821–832 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Tugarinov, V., Kanelis, V. & Kay, L.E. Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat. Protoc. 1, 749–754 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Bax, A. Multidimensional nuclear-magnetic-resonance methods for protein studies. Curr. Opin. Struct. Biol. 4, 738–744 (1994).

    Article  CAS  Google Scholar 

  54. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  55. Bax, A., Clore, G.M. & Gronenborn, A.M. H-1-H-1 correlation via isotropic mixing of C-13 magnetization, a new 3-dimensional approach for assigning H-1 and C-13 spectra of C-13-enriched proteins. J. Magn. Reson. 88, 425–431 (1990).

    CAS  Google Scholar 

  56. Wuthrich, K. NMR of Proteins and Nucleic Acids (Wiley Interscience, 1986).

  57. Marion, D. et al. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28, 6150–6156 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berjanskii, M.V. & Wishart, D.S. A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127, 14970–14971 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Güntert, P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 278, 353–378 (2004).

    PubMed  Google Scholar 

  62. Bhattacharya, A., Tejero, R. & Montelione, G.T. Evaluating protein structures determined by structural genomics consortia. Proteins 66, 778–795 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Tugarinov, V., Hwang, P.M. & Kay, L.E. Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins. Annu. Rev. Biochem. 73, 107–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Vranken, W.F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Mizuguchi (University of Toyama, Toyama, Japan) for the transthyretin plasmid; C.A. Dickey (University of South Florida, Tampa, Florida, USA) for the Hsp90 plasmid; and C.A. Dickey, B.A. Nordhues and S.G. Rüdiger for useful discussions. We are grateful to M. Ubbink (Leiden University, Leiden, the Netherlands) for the CLanP-7 lanthanide tag, to P. Wysoczanski for help with NMR spectroscopy experiments recorded for Hsp90's M domain, and to A. Pérez-Lara for help with ITC experiments. This work was supported by the Alexander von Humboldt Foundation (fellowship to J.H.K.), the European Commission (Marie Curie Intra-European fellowship, project number 626526 to J.O.), the Fulbright Program (scholarship to B.J.C.) and the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement 283570 to M.Z.).

Author information

Authors and Affiliations

Authors

Contributions

J.H.K. performed NMR spectroscopy and biochemical experiments on TTR variants, as well as structure calculations. J.O. performed NMR spectroscopy, SAXS and ITC experiments on Hsp90. B.J.C. and J.O. produced Hsp90 mutants for the assignment of isoleucine methyl groups. J.H.K., J.O. and M.Z. designed experiments. J.H.K., J.O. and M.Z. wrote the paper.

Corresponding author

Correspondence to Markus Zweckstetter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 The structure of the misfolded monomeric conformation of TTR is well defined.

(a) Comparison of 1H-15N NMR spectra of M-TTR at ambient pressure (green) and 500 bar (blue). Working at 500 bar improves the spectral quality. (b) Experimentally observed NOEs (green dotted lines) are visualized on the 3D structure of M-TTR (blue).

Supplementary Figure 2 Reproducibility in calorimetric titrations of Hsp90 with M-TTR.

From left to right and top to bottom, raw data resulting from the titration of 25x1.5 μl aliquots of 1671 μM of M-TTR into 25 μM of Hsp90 (a), 783 μM of M-TTR into 30 μM of Hsp90 (b), 520 μM of M-TTR into 30 μM of Hsp90 (c), 313 μM of M-TTR into 25,5 μM of Hsp90 (d) and 166 μM of M-TTR into 22,75 μM of Hsp90 (e) are shown. The biphasic thermodynamic behavior was present in all tested conditions.

Supplementary Figure 3 Nucleotide binding does not promote allosteric changes in the Hsp90–M-TTR complex.

(a) As observed from the P(r) distribution obtained from SAXS scattering data, ADP binding does not change the global extended conformation of the Hsp90/M-TTR complex. While Hsp90 shows Rg= 6.34 ± 0.16 nm and DMAX= 20.94 ± 0.52 nm, the Hsp90+M-TTR complex has Rg= 6.58 ± 0.44 nm and DMAX= 21.77 ± 0.71 nm. (b) Comparison of NMR signal intensities of the methyl signals of M-TTR/Hsp90 in the absence and presence of 2 mM ADP. Samples contained 0.07 mM 13C-labeled and methyl-protonated M-TTR in 50 mM MES, pH 7, 100 mM NaCl, 5 mM DTT, 1 mM MgSO4, 0.1 mM DSS, and a 2-fold (blue) or 4-fold (green) molar excess of Hsp90.

Supplementary Figure 4 Hsp90 uses several binding interfaces to bind M-TTR.

Residues in the N- and M-domain of Hsp90, which show the strongest PCSs in the presence of M-TTR, are highlighted in orange in the 3D structure. Hsp90’s N-domain is colored in light blue, M-domain in red and C-terminal domain in light green. The charged linker, which connects Hsp90’s N and M domain, is represented by a grey line.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Table 1 (PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oroz, J., Kim, J., Chang, B. et al. Mechanistic basis for the recognition of a misfolded protein by the molecular chaperone Hsp90. Nat Struct Mol Biol 24, 407–413 (2017). https://doi.org/10.1038/nsmb.3380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing