Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity

Abstract

Deposition of amyloid-β plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloid-β peptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aβ fibrils increases β-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aβ aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-β–Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tat protein increases aggregation and adherence of Aβ fibrils.
Figure 2: Structure of Tat protein.
Figure 3: Changes in the Aβ-fibril structure induced by Tat protein.
Figure 4: Aβ fibrils untwist and become more mechanically resistant in the presence of Tat.
Figure 5: Tat binds to the external surfaces of Aβ fibrils.
Figure 6: Aβ–Tat complexes show synergistic neurotoxicity in cultured neurons.
Figure 7: Formation of Aβ–Tat complexes in vivo.
Figure 8: Proposed model of Aβ-Tat interaction and their increased neurotoxicity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Heaton, R.K. et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J. Neurovirol. 17, 3–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Valcour, V.G., Shikuma, C.M., Watters, M.R. & Sacktor, N.C. Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18 (Suppl. 1), S79–S86 (2004).

    Article  PubMed  Google Scholar 

  3. Becker, J.T., Lopez, O.L., Dew, M.A. & Aizenstein, H.J. Prevalence of cognitive disorders differs as a function of age in HIV virus infection. AIDS 18 (Suppl. 1), S11–S18 (2004).

    Article  PubMed  Google Scholar 

  4. Esiri, M.M., Biddolph, S.C. & Morris, C.S. Prevalence of Alzheimer plaques in AIDS. J. Neurol. Neurosurg. Psychiatry 65, 29–33 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green, D.A. et al. Brain deposition of β-amyloid is a common pathologic feature in HIV positive patients. AIDS 19, 407–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, T.P. et al. Induction of IL-17 and nonclassical T-cell activation by HIV-Tat protein. Proc. Natl. Acad. Sci. USA 110, 13588–13593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pulliam, L. HIV regulation of amyloid β production. J. Neuroimmune Pharmacol. 4, 213–217 (2009).

    Article  PubMed  Google Scholar 

  8. Daily, A., Nath, A. & Hersh, L.B. Tat peptides inhibit neprilysin. J. Neurovirol. 12, 153–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, J., Yoon, J.H. & Kim, Y.S. HIV-1 Tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8, e77972 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Debaisieux, S., Rayne, F., Yezid, H. & Beaumelle, B. The ins and outs of HIV-1 Tat. Traffic 13, 355–363 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Bagashev, A. & Sawaya, B.E. Roles and functions of HIV-1 Tat protein in the CNS: an overview. Virol. J. 10, 358–378 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guo, X. et al. Suppression of an intrinsic strand transfer activity of HIV-1 Tat protein by its second-exon sequences. Virology 307, 154–163 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, S.M. et al. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J. Biol. Chem. 278, 44816–44825 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Avraham, H.K., Jiang, S., Lee, T.H., Prakash, O. & Avraham, S. HIV-1 Tat-mediated effects on focal adhesion assembly and permeability in brain microvascular endothelial cells. J. Immunol. 173, 6228–6233 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Shojania, S. & O'Neil, J.D. HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy. J. Biol. Chem. 281, 8347–8356 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Shojania, S. & O'Neil, J.D. Intrinsic disorder and function of the HIV-1 Tat protein. Protein Pept. Lett. 17, 999–1011 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mediouni, S. et al. Identification of a highly conserved surface on Tat variants. J. Biol. Chem. 288, 19072–19080 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tahirov, T.H. et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465, 747–751 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sisodia, S.S., Koo, E.H., Beyreuther, K., Unterbeck, A. & Price, D.L. Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–495 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Ball, K.A., Wemmer, D.E. & Head-Gordon, T. Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J. Phys. Chem. B 118, 6405–6416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Petkova, A.T. et al. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307, 262–265 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Kodali, R., Williams, A.D., Chemuru, S. & Wetzel, R. Abeta(1-40) forms five distinct amyloid structures whose β-sheet contents and fibril stabilities are correlated. J. Mol. Biol. 401, 503–517 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moores, B., Drolle, E., Attwood, S.J., Simons, J. & Leonenko, Z. Effect of surfaces on amyloid fibril formation. PLoS One 6, e25954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paravastu, A.K., Leapman, R.D., Yau, W.M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. Proc. Natl. Acad. Sci. USA 105, 18349–18354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, X., Hui, L., Geiger, N.H., Haughey, N.J. & Geiger, J.D. Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol. Aging 34, 2370–2378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, Y. et al. HIV-1 Tat regulates occludin and Aβ transfer receptor expression in brain endothelial cells via Rho/ROCK signaling pathway. Oxid. Med. Cell. Longev. 2016, 4196572 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. Jeang, K.T., Xiao, H. & Rich, E.A. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J. Biol. Chem. 274, 28837–28840 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Garcia, J.A., Harrich, D., Pearson, L., Mitsuyasu, R. & Gaynor, R.B. Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J. 7, 3143–3147 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pierleoni, R. et al. Effect of the redox state on HIV-1 tat protein multimerization and cell internalization and trafficking. Mol. Cell. Biochem. 345, 105–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Lara, C., Adamcik, J., Jordens, S. & Mezzenga, R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 12, 1868–1875 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Adamcik, J. et al. Microtubule-binding R3 fragment from Tau self-assembles into giant multistranded amyloid ribbons. Angew. Chem. Int. Ed. 55, 618–622 (2016).

    Article  CAS  Google Scholar 

  33. Adamcik, J. & Mezzenga, R. Adjustable twisting periodic pitch of amyloid fibrils. Soft Matter 7, 5437–5443 (2011).

    Article  CAS  Google Scholar 

  34. Magnuson, D.S., Knudsen, B.E., Geiger, J.D., Brownstone, R.M. & Nath, A. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann. Neurol. 37, 373–380 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Nath, A. et al. Synergistic neurotoxicity by human immunodeficiency virus proteins Tat and gp120: protection by memantine. Ann. Neurol. 47, 186–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Adamcik, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 5, 423–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Adamcik, J. et al. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4, 4426–4429 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Usov, I. & Mezzenga, R. Correlation between nanomechanics and polymorphic conformations in amyloid fibrils. ACS Nano 8, 11035–11041 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Milanesi, L. et al. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Proc. Natl. Acad. Sci. USA 109, 20455–20460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fitzpatrick, A.W., Park, S.T. & Zewail, A.H. Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc. Natl. Acad. Sci. USA 110, 10976–10981 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spedden, E. & Staii, C. Neuron biomechanics probed by atomic force microscopy. Int. J. Mol. Sci. 14, 16124–16140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bieschke, J. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol. 8, 93–101 (2011).

    Article  PubMed  Google Scholar 

  43. Yang, D.S., Yip, C.M., Huang, T.H., Chakrabartty, A. & Fraser, P.E. Manipulating the amyloid-β aggregation pathway with chemical chaperones. J. Biol. Chem. 274, 32970–32974 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Williams, A.D. et al. Structural properties of Abeta protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA 102, 7115–7120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reyes Barcelo, A.A., Gonzalez-Velasquez, F.J. & Moss, M.A. Soluble aggregates of the amyloid-β peptide are trapped by serum albumin to enhance amyloid-β activation of endothelial cells. J. Biol. Eng. 3, 5–13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee, J. et al. Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability. Biochemistry 53, 4704–4714 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Tofoleanu, F. & Buchete, N.V. Alzheimer Aβ peptide interactions with lipid membranes: fibrils, oligomers and polymorphic amyloid channels. Prion 6, 339–345 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butterfield, D.A. & Sultana, R. Methionine-35 of aβ(1-42): importance for oxidative stress in Alzheimer disease. J. Amino Acids 2011, 198430 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jana, A. & Pahan, K. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer's disease. J. Neurosci. 30, 12676–12689 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hategan, A., Sengupta, K., Kahn, S., Sackmann, E. & Discher, D.E. Topographical pattern dynamics in passive adhesion of cell membranes. Biophys. J. 87, 3547–3560 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nardi, J., Bruinsma, R. & Sackmann, E. Adhesion induced reorganization of charged fluid membranes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58, 6340–6354 (1998).

    CAS  Google Scholar 

  52. Hategan, A., Law, R., Kahn, S. & Discher, D.E. Adhesively-tensed cell membranes: lysis kinetics and atomic force microscopy probing. Biophys. J. 85, 2746–2759 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mishra, A., Gordon, V.D., Yang, L., Coridan, R. & Wong, G.C. HIV TAT forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. Angew. Chem. Int. Ed. Engl. 47, 2986–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Gupta, B., Levchenko, T.S. & Torchilin, V.P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57, 637–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Farago, O. Membrane fluctuations near a plane rigid surface. Phys. Rev. E 78, 051919 (2008).

    Article  Google Scholar 

  56. Hudson, L. et al. Detection of the human immunodeficiency virus regulatory protein tat in CNS tissues. J. Neurovirol. 6, 145–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Wood, S.J., Maleeff, B., Hart, T. & Wetzel, R. Physical, morphological and functional differences between ph 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Abeta. J. Mol. Biol. 256, 870–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  58. Li, G.H., Li, W., Mumper, R.J. & Nath, A. Molecular mechanisms in the dramatic enhancement of HIV-1 Tat transduction by cationic liposomes. FASEB J. 26, 2824–2834 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hollman, A.M. et al. Selective isolation and purification of tat protein via affinity membrane separation. Biotechnol. Prog. 21, 451–459 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Ban, T. & Goto, Y. Direct observation of amyloid growth monitored by total internal reflection fluorescence microscopy. Methods Enzymol. 413, 91–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Haughey, N.J. et al. Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann. Neurol. 55, 257–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Jankowsky, J.L., Xu, G., Fromholt, D., Gonzales, V. & Borchelt, D.R. Environmental enrichment exacerbates amyloid plaque formation in a transgenic mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol. 62, 1220–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates, compact 2nd edn. (Elsevier, 2004).

  64. Rockenstein, E., Mallory, M., Mante, M., Sisk, A. & Masliaha, E. Early formation of mature amyloid-beta protein deposits in a mutant APP transgenic model depends on levels of Abeta(1-42). J. Neurosci. Res. 66, 573–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Havas, D. et al. A longitudinal study of behavioral deficits in an AβPP transgenic mouse model of Alzheimer's disease. J. Alzheimers Dis. 25, 231–243 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fields, J.A. et al. Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr. HIV Res. 13, 43–54 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  68. Lu, J.X. et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Cell 154, 1257–1268 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Alred, E.J., Phillips, M., Berhanu, W.M. & Hansmann, U.H. On the lack of polymorphism in Aβ-peptide aggregates derived from patient brains. Protein Sci. 24, 923–935 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kozakov, D. et al. How good is automated protein docking? Proteins 81, 2159–2166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Bachani for preparing the Tat protein stocks, K. Mather for preparing the neuronal cell cultures used in the adhesion imaging experiments and A. Savonenko (Johns Hopkins University School of Medicine) for providing the APP-PS1 mice. This work was supported by intramural funds from NINDS, NIH Z01-NS003130 to A.N.; E.M. was supported by NIH grant R01-AG005131; N.H. was supported by NIH grant R01-MH096636; and E.K.D. was supported by NIH Z01-EB000085.

Author information

Authors and Affiliations

Authors

Contributions

A.H. and A.N. conceived and designed the study. A.H. performed AFM, ThT bulk fluorescence and single-fibril and cell-adhesion experiments, and analyzed and interpreted data. M.A.B. performed the computer simulations. E.K. performed the CD measurements. J.S. performed neurotoxicity experiments. E.M. and A.F. performed the transgenic-mouse experiments and immunohistochemistry analysis of brain samples. M.-H.L. performed immunohistochemistry of the Tat-injected mouse brain samples. A.M.D. and N.H. performed the experiments on Tat-injected mice. E.K.D. contributed to and supervised AFM data acquisition. A.H., A.N. and M.A.B. wrote the paper, and all authors edited the manuscript.

Corresponding author

Correspondence to Avindra Nath.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Note (PDF 1440 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hategan, A., Bianchet, M., Steiner, J. et al. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 24, 379–386 (2017). https://doi.org/10.1038/nsmb.3379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing