Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation

Abstract

The nuclear long noncoding RNA (lncRNA) Xist ensures X-chromosome inactivation (XCI) in female placental mammals. Although Xist is one of the most intensively studied lncRNAs, the mechanisms associated with its capacity to trigger chromosome-wide gene silencing, the formation of facultative heterochromatin and an unusual 3D conformation of the inactive X chromosome (Xi) have remained elusive. Now researchers have identified novel functional partners of Xist in a series of breakthrough studies, using unbiased techniques to isolate Xist-bound proteins, as well as forward genetic screens. In addition, important insights into the 3D organization of Xi and its relation to gene expression have been obtained. In this Review, we discuss how this new information is providing a recipe for deciphering XCI mechanisms by which a multitasking RNA can structurally and functionally transform an active chromosome into uniquely organized facultative heterochromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and functions of mouse Xist RNA.
Figure 2: Proteomic and forward genetic screens used to identify Xist silencing partners.
Figure 3: Functions of Xist RNA silencing partners for XCI.
Figure 4: Distinct topology of the Xa versus the Xi, and the influence of DXZ4 and Xist deletions.

Similar content being viewed by others

References

  1. Galupa, R. & Heard, E. X-chromosome inactivation: new insights into cis and trans regulation. Curr. Opin. Genet. Dev. 31, 57–66 (2015).

    CAS  PubMed  Google Scholar 

  2. Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev. 11, 156–166 (1997).

    CAS  PubMed  Google Scholar 

  3. Penny, G.D., Kay, G.F., Sheardown, S.A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature 379, 131–137 (1996).

    CAS  PubMed  Google Scholar 

  4. van Bemmel, J.G., Mira-Bontenbal, H. & Gribnau, J. Cis- and trans-regulation in X inactivation. Chromosoma 125, 41–50 (2016).

    CAS  PubMed  Google Scholar 

  5. Escamilla-Del-Arenal, M., da Rocha, S.T. & Heard, E. Evolutionary diversity and developmental regulation of X-chromosome inactivation. Hum. Genet. 130, 307–327 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev. 25, 1371–1383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, S.D. XIST and the mapping of the X chromosome inactivation centre. BioEssays 13, 607–612 (1991).

    CAS  PubMed  Google Scholar 

  8. Nesterova, T.B. et al. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res. 11, 833–849 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yen, Z.C., Meyer, I.M., Karalic, S. & Brown, C.J. A cross-species comparison of X-chromosome inactivation in Eutheria. Genomics 90, 453–463 (2007).

    CAS  PubMed  Google Scholar 

  10. Wutz, A., Rasmussen, T.P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    CAS  PubMed  Google Scholar 

  11. da Rocha, S.T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell 53, 301–316 (2014).

    PubMed  Google Scholar 

  12. Kohlmaier, A. et al. A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol. 2, E171 (2004).

    PubMed  PubMed Central  Google Scholar 

  13. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).

    CAS  PubMed  Google Scholar 

  15. Brown, C.J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349, 38–44 (1991).

    CAS  PubMed  Google Scholar 

  16. Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19, 469–476 (2010).

    CAS  PubMed  Google Scholar 

  17. Jeon, Y. & Lee, J.T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Maenner, S. et al. 2-D structure of the A region of Xist RNA and its implication for PRC2 association. PLoS Biol. 8, e1000276 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Sarma, K. et al. ATRX directs binding of PRC2 to Xist RNA and polycomb targets. Cell 159, 869–883 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. McHugh, C.A., Russell, P. & Guttman, M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15, 203 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. Duszczyk, M.M., Wutz, A., Rybin, V. & Sattler, M. The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA 17, 1973–1982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brockdorff, N. Noncoding RNA and Polycomb recruitment. RNA 19, 429–442 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell 57, 552–558 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015). This study revealed the Xist -protein interactome. The authors used a novel proteomic method (CHIRP-MS) to identify 81 Xist RBPs, including HNRNPU, HNRNPK and SPEN, which are involved in Xist -mediated silencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. McHugh, C.A. et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521, 232–236 (2015). This study was the first to use a UV-cross-linking-based proteomic method (RAP-MS) to reveal ten high-confidence Xist RBPs, including SPEN/SHARP. A mechanistic link between SPEN/SHARP and the SMRT/HDAC3 deacetylase complex in regulating XCI was demonstrated.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Minajigi, A. et al. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349, aab2276 (2015). In this study, the authors used iDRiP to identify multiple Xist interactors, including architectural proteins. The paper describes a role for Xist in Xi-specific cohesin reorganization and chromosome conformation.

    Google Scholar 

  27. Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).

    CAS  PubMed  Google Scholar 

  28. Agrelo, R. et al. SATB1 defines the developmental context for gene silencing by Xist in lymphoma and embryonic cells. Dev. Cell 16, 507–516 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nechanitzky, R., Dávila, A., Savarese, F., Fietze, S. & Grosschedl, R. Satb1 and Satb2 are dispensable for X chromosome inactivation in mice. Dev. Cell 23, 866–871 (2012).

    CAS  PubMed  Google Scholar 

  30. Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nat. Genet. 28, 371–375 (2001).

    CAS  PubMed  Google Scholar 

  31. Kalantry, S. et al. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat. Cell Biol. 8, 195–202 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Blewitt, M.E. et al. SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation. Nat. Genet. 40, 663–669 (2008).

    CAS  PubMed  Google Scholar 

  33. Gendrel, A.V. et al. Smchd1-dependent and -independent pathways determine developmental dynamics of CpG island methylation on the inactive X chromosome. Dev. Cell 23, 265–279 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Moindrot, B. et al. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep. 12, 562–572 (2015). The RNAi-based forward screen used in this study identified novel factors involved in Xist -mediated gene silencing. The top hits were SPEN and RBM15, both RBPs containing a SPOC domain, and WTAP, a subunit of the m6A RNA methyltransferase complex.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Monfort, A. et al. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015). The authors of this study used a viral gene-trap screen on mouse haploid ESCs and successfully identified factors involved in in Xist -mediated gene silencing, including the SPEN RBP.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rego, A., Sinclair, P.B., Tao, W., Kireev, I. & Belmont, A.S. The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J. Cell Sci. 121, 1119–1127 (2008).

    CAS  PubMed  Google Scholar 

  37. Teller, K. et al. A top-down analysis of Xa- and Xi-territories reveals differences of higher order structure at ≥ 20 Mb genomic length scales. Nucleus 2, 465–477 (2011).

    PubMed  Google Scholar 

  38. Smeets, D. et al. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 7, 8 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Chaumeil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev. 20, 2223–2237 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Clemson, C.M., Hall, L.L., Byron, M., McNeil, J. & Lawrence, J.B. The X chromosome is organized into a gene-rich outer rim and an internal core containing silenced nongenic sequences. Proc. Natl. Acad. Sci. USA 103, 7688–7693 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Nora, E.P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Darrow, E.M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl. Acad. Sci. USA 113, E4504–E4512 (2016). In this study, the authors dissected the role of the DXZ4 boundary element in maintaining the megadomain structure of the human Xi. Deletion of DXZ4 revealed the importance of the element for the 3D Xi conformation, but not for Xi silencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16, 152 (2015).

    PubMed  PubMed Central  Google Scholar 

  44. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016). This study—the most comprehensive study of the Xi structure to date—reveals organization into two megadomains and a general lack of TAD segmentation, except at regions of clustered escapees. Xist RNA coating is required for the formation of Xi's bipartite structure, whereas DXZ4 boundary deletion disrupts this structure, with little effect on Xi silencing.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rao, S.S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Siomi, H., Matunis, M.J., Michael, W.M. & Dreyfuss, G. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res. 21, 1193–1198 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ong, S.E. & Mann, M. Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol. 359, 37–52 (2007).

    CAS  PubMed  Google Scholar 

  49. Ariyoshi, M. & Schwabe, J.W. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 17, 1909–1920 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cooper, S. et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat. Commun. 7, 13661 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kolodziej, P.A., Jan, L.Y. & Jan, Y.N. Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron 15, 273–286 (1995).

    CAS  PubMed  Google Scholar 

  52. Arieti, F. et al. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs. Nucleic Acids Res. 42, 6742–6752 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shi, Y. et al. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev. 15, 1140–1151 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. You, S.H. et al. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat. Struct. Mol. Biol. 20, 182–187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome structure. Cell 165, 1267–1279 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuroda, K. et al. Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity 18, 301–312 (2003).

    CAS  PubMed  Google Scholar 

  57. Gallardo, M. et al. hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies. Cancer Cell 28, 486–499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Patil, D.P. et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016). This was the first study to report a functional link between m6A RNA methylation and Xist RNA function.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee, J.H. & Skalnik, D.G. Rbm15-Mkl1 interacts with the Setd1b histone H3-Lys4 methyltransferase via a SPOC domain that is required for cytokine-independent proliferation. PLoS One 7, e42965 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zolotukhin, A.S. et al. Nuclear export factor RBM15 facilitates the access of DBP5 to mRNA. Nucleic Acids Res. 37, 7151–7162 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, Z. et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat. Genet. 28, 220–221 (2001).

    CAS  PubMed  Google Scholar 

  62. Horiuchi, K. et al. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J. Biol. Chem. 288, 33292–33302 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Little, N.A., Hastie, N.D. & Davies, R.C. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum. Mol. Genet. 9, 2231–2239 (2000).

    CAS  PubMed  Google Scholar 

  64. Horiuchi, K. et al. Wilms' tumor 1-associating protein regulates G2/M transition through stabilization of cyclin A2 mRNA. Proc. Natl. Acad. Sci. USA 103, 17278–17283 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ping, X.L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep. 8, 284–296 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Meyer, K.D. & Jaffrey, S.R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamada, N. et al. Xist exon 7 contributes to the stable localization of Xist RNA on the inactive X-chromosome. PLoS Genet. 11, e1005430 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Pullirsch, D. et al. The Trithorax group protein Ash2l and Saf-A are recruited to the inactive X chromosome at the onset of stable X inactivation. Development 137, 935–943 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kolpa, H.J., Fackelmayer, F.O. & Lawrence, J.B. SAF-A requirement in anchoring XIST RNA to chromatin varies in transformed and primary cells. Dev. Cell 39, 9–10 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakaguchi, T. et al. Control of chromosomal localization of Xist by hnRNP U family molecules. Dev. Cell 39, 11–12 (2016).

    CAS  PubMed  Google Scholar 

  72. Olins, A.L., Rhodes, G., Welch, D.B., Zwerger, M. & Olins, D.E. Lamin B receptor: multi-tasking at the nuclear envelope. Nucleus 1, 53–70 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Chen, C.K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 354, 468–472 (2016).

    CAS  PubMed  Google Scholar 

  74. Yang, F. et al. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Zhang, L.F., Huynh, K.D. & Lee, J.T. Perinucleolar targeting of the inactive X during S phase: evidence for a role in the maintenance of silencing. Cell 129, 693–706 (2007).

    CAS  PubMed  Google Scholar 

  76. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chadwick, B.P. DXZ4 chromatin adopts an opposing conformation to that of the surrounding chromosome and acquires a novel inactive X-specific role involving CTCF and antisense transcripts. Genome Res. 18, 1259–1269 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Horakova, A.H. et al. The mouse DXZ4 homolog retains Ctcf binding and proximity to Pls3 despite substantial organizational differences compared to the primate macrosatellite. Genome Biol. 13, R70 (2012).

    PubMed  PubMed Central  Google Scholar 

  79. Dixon, J.R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Merkenschlager, M. & Nora, E.P. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu. Rev. Genomics Hum. Genet. 17, 17–43 (2016).

    CAS  PubMed  Google Scholar 

  81. Fang, R., Moss, W.N., Rutenberg-Schoenberg, M. & Simon, M.D. Probing Xist RNA structure in cells using Targeted Structure-Seq. PLoS Genet. 11, e1005668 (2015).

    PubMed  PubMed Central  Google Scholar 

  82. Smola, M.J. et al. SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl. Acad. Sci. USA 113, 10322–10327 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Pinheiro, E. Nora and S.F. de Almeida for their critical reading of the manuscript. This work was supported by Fundação para a Ciência e Tecnologia (grants PTDC/BEX-BCM/2612/2014 and IF/00242/2014 to S.T.d.R.). Research in the Heard laboratory was supported by Labex DEEP (ANR-11-LBX-0044), part of the IDEX Idex PSL (ANR-10-IDEX-0001-02 PSL), ERC Advanced Investigator award 250367 and “La Ligue Contre le Cancer” (Equipe Labelisée).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Heard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha, S., Heard, E. Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 24, 197–204 (2017). https://doi.org/10.1038/nsmb.3370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing