Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Elements of biological oscillations in time and space

Abstract

Oscillations in time and space are ubiquitous in nature and play critical roles in dynamic cellular processes. Although the molecular mechanisms underlying the generation of the dynamics are diverse, several distinct regulatory elements have been recognized as being critical in producing and modulating oscillatory dynamics. These include negative and positive feedback, time delay, nonlinearity in regulation, and random fluctuations ('noise'). Here we discuss the specific roles of these five elements in promoting or attenuating oscillatory dynamics, by drawing on insights from quantitative analyses of natural or synthetic biological networks.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Generation of temporal oscillations.
Figure 2: Generation of spatial oscillations by negative feedback or negative feedback coupled with positive feedback.

References

  1. Wee, K.B., Yio, W.K., Surana, U. & Chiam, K.H. Transcription factor oscillations induce differential gene expressions. Biophys. J. 102, 2413–2423 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Zheng, X. & Sehgal, A. Probing the relative importance of molecular oscillations in the circadian clock. Genetics 178, 1147–1155 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Novak, B., Tyson, J.J., Gyorffy, B. & Csikasz-Nagy, A. Irreversible cell-cycle transitions are due to systems-level feedback. Nat. Cell Biol. 9, 724–728 (2007).

    CAS  PubMed  Article  Google Scholar 

  4. Zhou, M. et al. Redox rhythm reinforces the circadian clock to gate immune response. Nature 523, 472–476 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Oates, A.C., Morelli, L.G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. Kondo, S. & Asal, R. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995).

    CAS  PubMed  Article  Google Scholar 

  7. Lenz, P. & Søgaard-Andersen, L. Temporal and spatial oscillations in bacteria. Nat. Rev. Microbiol. 9, 565–577 (2011).

    CAS  PubMed  Article  Google Scholar 

  8. Kruse, K. & Jülicher, F. Oscillations in cell biology. Curr. Opin. Cell Biol. 17, 20–26 (2005).

    CAS  PubMed  Article  Google Scholar 

  9. Ferrell, J.E. Jr., Tsai, T.Y. & Yang, Q. Modeling the cell cycle: why do certain circuits oscillate? Cell 144, 874–885 (2011).

    CAS  PubMed  Article  Google Scholar 

  10. Burnetti, A.J., Aydin, M. & Buchler, N.E. Cell cycle Start is coupled to entry into the yeast metabolic cycle across diverse strains and growth rates. Mol. Biol. Cell 27, 64–74 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Pedersen, A.B. & Greives, T.J. The interaction of parasites and resources cause crashes in a wild mouse population. J. Anim. Ecol. 77, 370–377 (2008).

    PubMed  Article  Google Scholar 

  12. Rowlett, V.W. & Margolin, W. The bacterial Min system. Curr. Biol. 23, R553–R556 (2013).

    CAS  PubMed  Article  Google Scholar 

  13. Hoyle, R.B. Pattern Formation: an Introduction to Methods (Cambridge University Press, 2006).

  14. Novák, B. & Tyson, J.J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000).

    CAS  PubMed  Article  Google Scholar 

  16. Monk, N.A. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol. 13, 1409–1413 (2003).

    CAS  PubMed  Article  Google Scholar 

  17. Swinburne, I.A., Miguez, D.G., Landgraf, D. & Silver, P.A. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev. 22, 2342–2346 (2008).Generation of oscillations by using a negative feedback with a tunable time delay mediated by intron length.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Mier-y-Terán-Romero, L., Silber, M. & Hatzimanikatis, V. The origins of time-delay in template biopolymerization processes. PLoS Comput. Biol. 6, e1000726 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102, 3581–3586 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Lahav, G. et al. Dynamics of the p53–Mdm2 feedback loop in individual cells. Nat. Genet. 36, 147–150 (2004).

    CAS  PubMed  Article  Google Scholar 

  21. Lev Bar-Or, R. et al. Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl. Acad. Sci. USA 97, 11250–11255 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).A pioneering synthetic oscillator consisting of a delayed negative feedback mediated by cascading transcriptional repression.

    CAS  PubMed  Article  Google Scholar 

  23. Bratsun, D., Volfson, D., Tsimring, L.S. & Hasty, J. Delay-induced stochastic oscillations in gene regulation. Proc. Natl. Acad. Sci. USA 102, 14593–14598 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Potvin-Trottier, L., Lord, N.D., Vinnicombe, G. & Paulsson, J. Synchronous long-term oscillations in a synthetic gene circuit. Nature 538, 514–517 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Mather, W., Bennett, M.R., Hasty, J. & Tsimring, L.S. Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys. Rev. Lett. 102, 068105 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. Rué, P. & Garcia-Ojalvo, J. Modeling gene expression in time and space. Annu. Rev. Biophys. 42, 605–627 (2013).

    PubMed  Article  CAS  Google Scholar 

  27. Barkai, N. & Leibler, S. Circadian clocks limited by noise. Nature 403, 267–268 (2000).

    CAS  PubMed  Article  Google Scholar 

  28. Veliz-Cuba, A. et al. Sources of variability in a synthetic gene oscillator. PLoS Comput. Biol. 11, e1004674 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Pomerening, J.R., Sontag, E.D. & Ferrell, J.E. Jr. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351 (2003).

    CAS  PubMed  Article  Google Scholar 

  30. Tsai, T.Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Gérard, C., Gonze, D. & Goldbeter, A. Effect of positive feedback loops on the robustness of oscillations in the network of cyclin-dependent kinases driving the mammalian cell cycle. FEBS J. 279, 3411–3431 (2012).

    PubMed  Article  CAS  Google Scholar 

  32. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Atkinson, M.R., Savageau, M.A., Myers, J.T. & Ninfa, A.J. Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113, 597–607 (2003).

    CAS  PubMed  Article  Google Scholar 

  34. Chen, Y., Kim, J.K., Hirning, A.J., Josic´, K. & Bennett, M.R. Synthetic biology: emergent genetic oscillations in a synthetic microbial consortium. Science 349, 986–989 (2015).Robust synchronized population-level oscillations in synthetic bacterial consortia, based on the positive and negative feedback between two strains.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Tigges, M., Marquez-Lago, T.T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    CAS  PubMed  Article  Google Scholar 

  36. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).Robust synthetic oscillator demonstrating the influence of interconnected positive and negative feedback resulting in robust oscillations.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. Ruoff, P., Vinsjevik, M., Monnerjahn, C. & Rensing, L. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J. Biol. Rhythms 14, 469–479 (1999).

    CAS  PubMed  Article  Google Scholar 

  38. Saithong, T., Painter, K.J. & Millar, A.J. The contributions of interlocking loops and extensive nonlinearity to the properties of circadian clock models. PLoS One 5, e13867 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Goodwin, B.C. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–438 (1965).

    CAS  PubMed  Article  Google Scholar 

  40. Waters, C.M. & Bassler, B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    CAS  PubMed  Article  Google Scholar 

  41. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).Chemical-mediated communication coordinates gene expression, thus resulting in synchronized cellular oscillators.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Gregor, T., Fujimoto, K., Masaki, N. & Sawai, S. The onset of collective behavior in social amoebae. Science 328, 1021–1025 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Prindle, A. et al. A sensing array of radically coupled genetic 'biopixels'. Nature 481, 39–44 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  44. Balagaddé, F.K., You, L., Hansen, C.L., Arnold, F.H. & Quake, S.R. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005).Cell-cell communication is used to couple gene expression with growth dynamics to create a population that controls its own density, thus resulting in oscillations in overall cell density.

    PubMed  Article  CAS  Google Scholar 

  45. Din, M.O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Balagaddé, F.K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  47. Simakov, D.S.A. & Pérez-Mercader, J. Noise induced oscillations and coherence resonance in a generic model of the nonisothermal chemical oscillator. Sci. Rep. 3, 2404 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  48. Tanouchi, Y. et al. A noisy linear map underlies oscillations in cell size and gene expression in bacteria. Nature 523, 357–360 (2015).An example of apparent oscillations emerging without an active feedback control; the oscillations are not conventional limit-cycle oscillations.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Aulehla, A. & Pourquié, O. Oscillating signaling pathways during embryonic development. Curr. Opin. Cell Biol. 20, 632–637 (2008).

    CAS  PubMed  Article  Google Scholar 

  50. Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

    CAS  PubMed  Article  Google Scholar 

  51. Cooke, J. & Zeeman, E.C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).

    CAS  PubMed  Article  Google Scholar 

  52. Jiang, Y.J. et al. Notch signalling and the synchronization of the somite segmentation clock. Nature 408, 475–479 (2000).

    CAS  PubMed  Article  Google Scholar 

  53. Oates, A.C. & Ho, R.K. Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129, 2929–2946 (2002).

    CAS  PubMed  Article  Google Scholar 

  54. Hirata, H. et al. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298, 840–843 (2002).

    CAS  PubMed  Article  Google Scholar 

  55. Gomez, C. & Pourquié, O. Developmental control of segment numbers in vertebrates. J. Exp. Zool. B Mol. Dev. Evol. 312, 533–544 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  56. Schröter, C. et al. Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol. 10, e1001364 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Dubrulle, J., McGrew, M.J. & Pourquié, O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001).

    CAS  PubMed  Article  Google Scholar 

  58. Pourquié, O. The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328–330 (2003).

    PubMed  Article  Google Scholar 

  59. Finkelshtein, A., Roth, D., Ben Jacob, E. & Ingham, C.J. Bacterial swarms recruit cargo bacteria to pave the way in toxic environments. MBio 6, e00074–15 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Liu, J. et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523, 550–554 (2015).Demonstration of self-sustained and long-lasting periodic oscillations in the expansion of Bacillus subtilis biofilms.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. de Boer, P.A., Crossley, R.E. & Rothfield, L.I. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56, 641–649 (1989).

    CAS  PubMed  Article  Google Scholar 

  62. Bi, E.F. & Lutkenhaus, J. FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164 (1991).

    CAS  PubMed  Article  Google Scholar 

  63. Hu, Z., Mukherjee, A., Pichoff, S. & Lutkenhaus, J. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. USA 96, 14819–14824 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Huang, K.C., Meir, Y. & Wingreen, N.S. Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc. Natl. Acad. Sci. USA 100, 12724–12728 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Loose, M., Fischer-Friedrich, E., Ries, J., Kruse, K. & Schwille, P. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320, 789–792 (2008).Demonstration of spatial oscillations in the Min system in vitro.

    CAS  PubMed  Article  Google Scholar 

  66. Payne, S. et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol. 9, 697 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Cao, Y. et al. Collective space-sensing coordinates pattern scaling in engineered bacteria. Cell 165, 620–630 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. Liu, C. et al. Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011).Generation of periodic stripe patterns in a growing bacterial colony by use of a synthetic gene circuit coupling cell density and motility.

    CAS  PubMed  Article  Google Scholar 

  69. Kondo, S. & Miura, T. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    CAS  PubMed  Article  Google Scholar 

  70. Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952).

    Article  Google Scholar 

  71. Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314, 1447–1450 (2006).

    CAS  PubMed  Article  Google Scholar 

  72. Nakamasu, A., Takahashi, G., Kanbe, A. & Kondo, S. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proc. Natl. Acad. Sci. USA 106, 8429–8434 (2009).Experimental identification of the interaction network among zebrafish pigment cells that forms Turing patterns.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Meinhardt, H. & Gierer, A. Pattern formation by local self-activation and lateral inhibition. BioEssays 22, 753–760 (2000).

    CAS  PubMed  Article  Google Scholar 

  74. Lindner, B., Garcıa-Ojalvo, J., Neiman, A. & Schimansky-Geier, L. Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004).

    Article  Google Scholar 

  75. Hempel, H., Schimansky-Geier, L. & Garcia-Ojalvo, J. Noise-sustained pulsating patterns and global oscillations in subexcitable media. Phys. Rev. Lett. 82, 3713 (1999).

    CAS  Article  Google Scholar 

  76. Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A. & Lee, S.S. Turing's model for biological pattern formation and the robustness problem. Interface Focus 2, 487–496 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  77. Zambrano, S., De Toma, I., Piffer, A., Bianchi, M.E. & Agresti, A. NF-κB oscillations translate into functionally related patterns of gene expression. eLife 5, e09100 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  78. Zhang, C., Tsoi, R., Wu, F. & You, L. Processing oscillatory signals by incoherent feedforward loops. PLoS Comput. Biol. 12, e1005101 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. Purvis, J.E. et al. p53 dynamics control cell fate. Science 336, 1440–1444 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Weart, R.B. et al. A metabolic sensor governing cell size in bacteria. Cell 130, 335–347 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Monahan, L.G., Hajduk, I.V., Blaber, S.P., Charles, I.G. & Harry, E.J. Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio 5, e00935–e14 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Voigt, C.A., Wolf, D.M. & Arkin, A.P. The Bacillus subtilis sin operon: an evolvable network motif. Genetics 169, 1187–1202 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Dai and C. Zhang for discussions and comments. Related research in the You laboratory is partially supported by the Office of Naval Research, National Science Foundation, Army Research Office, National Institutes of Health, and a David and Lucile Packard Fellowship (L.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchong You.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Lopatkin, A. & You, L. Elements of biological oscillations in time and space. Nat Struct Mol Biol 23, 1030–1034 (2016). https://doi.org/10.1038/nsmb.3320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3320

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing