Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular architecture of the complete COG tethering complex

Abstract

The conserved oligomeric Golgi (COG) complex orchestrates vesicular trafficking to and within the Golgi apparatus. Here, we use negative-stain electron microscopy to elucidate the architecture of the hetero-octameric COG complex from Saccharomyces cerevisiae. Intact COG has an intricate shape, with four (or possibly five) flexible legs, that differs strikingly from that of the exocyst complex and appears to be well suited for vesicle capture and fusion.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Purification and negative-stain EM of the yeast COG complex.
Figure 2: Molecular architecture of the COG complex.

References

  1. Südhof, T.C. & Rothman, J.E. Science 323, 474–477 (2009).

    Article  Google Scholar 

  2. Yu, I.M. & Hughson, F.M. Annu. Rev. Cell Dev. Biol. 26, 137–156 (2010).

    CAS  Article  Google Scholar 

  3. Schindler, C., Chen, Y., Pu, J., Guo, X. & Bonifacino, J.S. Nat. Cell Biol. 17, 639–650 (2015).

    CAS  Article  Google Scholar 

  4. Whyte, J.R. & Munro, S. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  PubMed  Google Scholar 

  5. Dong, G., Hutagalung, A.H., Fu, C., Novick, P. & Reinisch, K.M. Nat. Struct. Mol. Biol. 12, 1094–1100 (2005).

    CAS  Article  Google Scholar 

  6. Pérez-Victoria, F.J. et al. Proc. Natl. Acad. Sci. USA 107, 12860–12865 (2010).

    Article  Google Scholar 

  7. Richardson, B.C. et al. Proc. Natl. Acad. Sci. USA 106, 13329–13334 (2009).

    CAS  Article  Google Scholar 

  8. Tripathi, A., Ren, Y., Jeffrey, P.D. & Hughson, F.M. Nat. Struct. Mol. Biol. 16, 114–123 (2009).

    CAS  Article  Google Scholar 

  9. Vasan, N., Hutagalung, A., Novick, P. & Reinisch, K.M. Proc. Natl. Acad. Sci. USA 107, 14176–14181 (2010).

    CAS  Article  Google Scholar 

  10. Ha, J.Y. et al. Proc. Natl. Acad. Sci. USA 111, 15762–15767 (2014).

    CAS  Article  Google Scholar 

  11. Ren, Y. et al. Cell 139, 1119–1129 (2009).

    CAS  Article  Google Scholar 

  12. Lees, J.A., Yip, C.K., Walz, T. & Hughson, F.M. Nat. Struct. Mol. Biol. 17, 1292–1297 (2010).

    CAS  Article  Google Scholar 

  13. Freeze, H.H. & Ng, B.G. Cold Spring Harb. Perspect. Biol. 3, a005371 (2011).

    Article  Google Scholar 

  14. Willett, R., Ungar, D. & Lupashin, V. Histochem. Cell Biol. 140, 271–283 (2013).

    CAS  Article  Google Scholar 

  15. Miller, V.J. & Ungar, D. Traffic 13, 891–897 (2012).

    CAS  Article  Google Scholar 

  16. Reynders, E. et al. Hum. Mol. Genet. 18, 3244–3256 (2009).

    CAS  Article  Google Scholar 

  17. Ungar, D. et al. J. Cell Biol. 157, 405–415 (2002).

    CAS  Article  Google Scholar 

  18. Heider, M.R. et al. Nat. Struct. Mol. Biol. 23, 59–66 (2016).

    CAS  Article  Google Scholar 

  19. Lübbehusen, J. et al. Hum. Mol. Genet. 19, 3623–3633 (2010).

    Article  Google Scholar 

  20. Foulquier, F. et al. Hum. Mol. Genet. 16, 717–730 (2007).

    CAS  Article  Google Scholar 

  21. Ohi, M., Li, Y., Cheng, Y. & Walz, T. Biol. Proced. Online 6, 23–34 (2004).

    CAS  Article  Google Scholar 

  22. Tang, G. et al. J. Struct. Biol. 157, 38–46 (2007).

    CAS  Article  Google Scholar 

  23. Yang, Z., Fang, J., Chittuluru, J., Asturias, F.J. & Penczek, P.A. Structure 20, 237–247 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 GM071574 (F.M.H.) and P01 GM062580 (T.W.).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments and analyzed data. J.Y.H., H.-T.C., D.U., and C.K.Y. performed the experiments. J.Y.H., H.-T.C., T.W., and F.M.H. wrote the manuscript.

Corresponding authors

Correspondence to Thomas Walz or Frederick M Hughson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Purification and negative-stain EM of K. lactis Cog5–8.

(a) The purified recombinant K. lactis Cog5-8 complex, visualized by SDS-PAGE and Coomassie Blue staining, is shown together with a representative image field and ten representative class averages. (b) Complete gallery of K. lactis Cog5-8 class averages (side length of each panel = 38 nm). The 129 class averages, which account for 4,958 particles, were obtained by subjecting 8,825 particles to 14 generations of ISAC.

Supplementary Figure 2 Negative-stain EM of S. cerevisiae Cog1–8.

Complete gallery of S. cerevisiae Cog1-8 class averages (side length of each panel = 63 nm). The 278 class averages, which account for 5,182 particles, were obtained by subjecting 31,872 particles to 18 generations of ISAC.

Supplementary Figure 3 Localizing individual subunits within the K. lactis Cog5–8 complex.

(a) Purified K. lactis Cog5-8 complexes containing single GFP tags, visualized by SDS-PAGE and Coomassie Blue staining. GFP-Cog6ΔN denotes N-terminally truncated Cog6 (residues 147-779). (b) Complete galleries of GFP-tagged K. lactis Cog5-8 class averages (side length of each panel = 38 nm). Only those complexes in which the GFP tag was visible in class averages are included; the remaining complexes were indistinguishable from the untagged complexes shown in Supplementary Fig. 1b.

Supplementary Figure 4 Dimensions of S. cerevisiae Cog1–8.

The indicated lengths (mean ± s.d.; n=5) were derived from class averages using ImageJ (https://imagej.nih.gov/ij/).

Supplementary Figure 5 Negative-stain EM of bovine COG.

Shown are four additional image fields of the bovine COG complex (see also Fig. 2e). The particles were too heterogeneous to allow successful class averaging.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 1662 kb)

Supplementary Data Set 1

Uncropped gel for Fig. 1 (PDF 489 kb)

Yeast COG appears to contain flexible hinges

Negative-stain EM of S. cerevisiae Cog1–8 yields class averages in which the legs of the complex adopt various orientations. (MOV 163 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ha, J., Chou, HT., Ungar, D. et al. Molecular architecture of the complete COG tethering complex. Nat Struct Mol Biol 23, 758–760 (2016). https://doi.org/10.1038/nsmb.3263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3263

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing