Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Molecular chaperones: providing a safe place to weather a midlife protein-folding crisis

Contrary to conventional wisdom that molecular chaperones rely on hydrophobic interactions to bind a wide variety of client proteins in danger of misfolding, three recent studies reveal that the ATP-independent chaperone Spy exploits electrostatic interactions to bind its clients quickly, yet loosely enough to enable folding of the client while it is chaperone bound.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein folding involves the selective stabilization of the functional native conformation (N) of a protein, versus globally unfolded conformations (U), partially folded intermediates (I) and misfolded states (A).
Figure 2: Effects of Spy binding on the folding-energy landscape of Im7, a model in vivo substrate.

References

  1. Saibil, H. Nat. Rev. Mol. Cell Biol. 14, 630–642 (2013).

    Article  CAS  Google Scholar 

  2. Shiau, A.K., Harris, S.F., Southworth, D.R. & Agard, D.A. Cell 127, 329–340 (2006).

    Article  CAS  Google Scholar 

  3. Mayer, M.P. Trends Biochem. Sci. 38, 507–514 (2013).

    Article  CAS  Google Scholar 

  4. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Nature 475, 324–332 (2011).

    Article  CAS  Google Scholar 

  5. King, J., Haase-Pettingell, C., Robinson, A.S., Speed, M. & Mitraki, A. FASEB J. 10, 57–66 (1996).

    Article  CAS  Google Scholar 

  6. Morimoto, R.I. Cold Spring Harb. Symp. Quant. Biol. 76, 91–99 (2011).

    Article  CAS  Google Scholar 

  7. Clare, D.K., Bakkes, P.J., van Heerikhuizen, H., van der Vies, S.M. & Saibil, H.R. Nature 457, 107–110 (2009).

    Article  CAS  Google Scholar 

  8. Buchner, J. Trends Biochem. Sci. 24, 136–141 (1999).

    Article  CAS  Google Scholar 

  9. Clerico, E.M., Tilitsky, J.M., Meng, W. & Gierasch, L.M. J. Mol. Biol. 427, 1575–1588 (2015).

    Article  CAS  Google Scholar 

  10. Nakatsukasa, K. & Brodsky, J.L. Traffic 9, 861–870 (2008).

    Article  CAS  Google Scholar 

  11. Fenton, W.A., Kashi, Y., Furtak, K. & Horwich, A.L. Nature 371, 614–619 (1994).

    Article  CAS  Google Scholar 

  12. Stull, F., Koldewey, P., Humes, J.R., Radford, S.E. & Bardwell, J.C. Nat. Struct. Mol. Biol. 23, 53–58 (2016).

    Article  CAS  Google Scholar 

  13. Koldewey, P., Stull, F., Horowitz, S., Martin, R. & Bardwell, J.C. Cell http://dx.doi.org/10.1016/j.cell.2016.05.054 (2016).

  14. Horowitz, S. et al. Nat. Struct. Mol. Biol. 23, 691–697 (2016).

    Article  CAS  Google Scholar 

  15. Quan, S. et al. Nat. Struct. Mol. Biol. 18, 262–269 (2011).

    Article  CAS  Google Scholar 

  16. Schreiber, G., Haran, G. & Zhou, H.X. Chem. Rev. 109, 839–860 (2009).

    Article  CAS  Google Scholar 

  17. Vijayakumar, M. et al. J. Mol. Biol. 278, 1015–1024 (1998).

    Article  CAS  Google Scholar 

  18. Heidary, S. et al. Biotechnol. Lett. 36, 1479–1484 (2014).

    Article  CAS  Google Scholar 

  19. Schwartz, R., Ting, C.S. & King, J. Genome Res. 11, 703–709 (2001).

    Article  CAS  Google Scholar 

  20. Miyazawa, S. & Jernigan, R.L. J. Mol. Biol. 256, 623–644 (1996).

    Article  CAS  Google Scholar 

  21. Gething, M.J. & Sambrook, J. Nature 355, 33–45 (1992).

    Article  CAS  Google Scholar 

  22. Clark, P.L. Trends Biochem. Sci. 29, 527–534 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia L Clark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, P., Elcock, A. Molecular chaperones: providing a safe place to weather a midlife protein-folding crisis. Nat Struct Mol Biol 23, 621–623 (2016). https://doi.org/10.1038/nsmb.3255

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing