Numerous recent crystal and cryo-EM structures have greatly advanced understanding of the functional mechanisms of neurotransmitter-gated ion channels. This Review discusses the structural basis of activation and desensitization mechanisms in glutamate and cysteine-loop receptors.
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization
Nature Communications Open Access 27 January 2021
-
Tracking Membrane Protein Dynamics in Real Time
The Journal of Membrane Biology Open Access 07 January 2021
-
Thermophoretic analysis of ligand-specific conformational states of the inhibitory glycine receptor embedded in copolymer nanodiscs
Scientific Reports Open Access 06 October 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Langley, J.N. On the reaction of cells and of nerve-endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari. J. Physiol. (Lond.) 33, 374–413 (1905).
Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).
Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).
Benton, R., Vannice, K.S., Gomez-Diaz, C. & Vosshall, L.B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila . Cell 136, 149–162 (2009).
Kawate, T., Michel, J.C., Birdsong, W.T. & Gouaux, E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460, 592–598 (2009).
Jasti, J., Furukawa, H., Gonzales, E.B. & Gouaux, E. Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449, 316–323 (2007).
Li, M., Toombes, G.E., Silberberg, S.D. & Swartz, K.J. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat. Neurosci. 18, 1577–1583 (2015).
Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).
Armstrong, N., Sun, Y., Chen, G.Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998).
Uchino, S., Sakimura, K., Nagahari, K. & Mishina, M. Mutations in a putative agonist binding region of the AMPA-selective glutamate receptor channel. FEBS Lett. 308, 253–257 (1992).
Abele, R., Keinanen, K. & Madden, D.R. Agonist-induced isomerization in a glutamate receptor ligand-binding domain: a kinetic and mutagenetic analysis. J. Biol. Chem. 275, 21355–21363 (2000).
Cheng, Q., Du, M., Ramanoudjame, G. & Jayaraman, V. Evolution of glutamate interactions during binding to a glutamate receptor. Nat. Chem. Biol. 1, 329–332 (2005).
Jin, R., Banke, T.G., Mayer, M.L., Traynelis, S.F. & Gouaux, E. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6, 803–810 (2003).
Inanobe, A., Furukawa, H. & Gouaux, E. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47, 71–84 (2005).
Lau, A.Y. & Roux, B. The hidden energetics of ligand binding and activation in a glutamate receptor. Nat. Struct. Mol. Biol. 18, 283–287 (2011).
Ahmed, A.H., Wang, S., Chuang, H.H. & Oswald, R.E. Mechanism of AMPA receptor activation by partial agonists: disulfide trapping of closed lobe conformations. J. Biol. Chem. 286, 35257–35266 (2011).
Robert, A., Armstrong, N., Gouaux, J.E. & Howe, J.R. AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization. J. Neurosci. 25, 3752–3762 (2005).
Jin, R., Horning, M., Mayer, M.L. & Gouaux, E. Mechanism of activation and selectivity in a ligand-gated ion channel: structural and functional studies of GluR2 and quisqualate. Biochemistry 41, 15635–15643 (2002).
Furukawa, H. & Gouaux, E. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22, 2873–2885 (2003).
Alberstein, R., Grey, R., Zimmet, A., Simmons, D.K. & Mayer, M.L. Glycine activated ion channel subunits encoded by ctenophore glutamate receptor genes. Proc. Natl. Acad. Sci. USA 112, E6048–E6057 (2015).
MacGillavry, H.D., Song, Y., Raghavachari, S. & Blanpied, T.A. Nanoscale scaffolding domains within the postsynaptic density concentrate synaptic AMPA receptors. Neuron 78, 615–622 (2013).
Raghavachari, S. & Lisman, J.E. Properties of quantal transmission at CA1 synapses. J. Neurophysiol. 92, 2456–2467 (2004).
Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114 (2002).
Zhong, W. et al. From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc. Natl. Acad. Sci. USA 95, 12088–12093 (1998).
Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).
Spurny, R. et al. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 112, E2543–E2552 (2015).
Li, S.X. et al. Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat. Neurosci. 14, 1253–1259 (2011).
Miller, P.S. & Aricescu, A.R. Crystal structure of a human GABAA receptor. Nature 512, 270–275 (2014).
Hassaine, G. et al. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512, 276–281 (2014).
Du, J., Lü, W., Wu, S., Cheng, Y. & Gouaux, E. Glycine receptor mechanism elucidated by electron cryo-microscopy. Nature 526, 224–229 (2015).
Huang, X., Chen, H., Michelsen, K., Schneider, S. & Shaffer, P.L. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine. Nature 526, 277–280 (2015).
Meyerson, J.R. et al. Structural mechanism of glutamate receptor activation and desensitization. Nature 514, 328–334 (2014).
Lau, A.Y. et al. A conformational intermediate in glutamate receptor activation. Neuron 79, 492–503 (2013).
Baranovic, J. et al. Dynamics of the ligand binding domain layer during AMPA receptor activation. Biophys. J. 110, 896–911 (2016).
Sobolevsky, A.I., Rosconi, M.P. & Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 462, 745–756 (2009).
Kazi, R., Dai, J., Sweeney, C., Zhou, H.X. & Wollmuth, L.P. Mechanical coupling maintains the fidelity of NMDA receptor–mediated currents. Nat. Neurosci. 17, 914–922 (2014).
Balannik, V., Menniti, F.S., Paternain, A.V., Lerma, J. & Stern-Bach, Y. Molecular mechanism of AMPA receptor noncompetitive antagonism. Neuron 48, 279–288 (2005).
Watanabe, J., Beck, C., Kuner, T., Premkumar, L.S. & Wollmuth, L.P. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J. Neurosci. 22, 10209–10216 (2002).
Talukder, I., Borker, P. & Wollmuth, L.P. Specific sites within the ligand-binding domain and ion channel linkers modulate NMDA receptor gating. J. Neurosci. 30, 11792–11804 (2010).
Schmid, S.M., Körber, C., Herrmann, S., Werner, M. & Hollmann, M. A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcher properties when mutated. J. Neurosci. 27, 12230–12241 (2007).
Bourne, Y., Talley, T.T., Hansen, S.B., Taylor, P. & Marchot, P. Crystal structure of a Cbtx-AChBP complex reveals essential interactions between snake alpha-neurotoxins and nicotinic receptors. EMBO J. 24, 1512–1522 (2005).
Mukhtasimova, N., Lee, W.Y., Wang, H.L. & Sine, S.M. Detection and trapping of intermediate states priming nicotinic receptor channel opening. Nature 459, 451–454 (2009).
Purohit, P. & Auerbach, A. Loop C and the mechanism of acetylcholine receptor-channel gating. J. Gen. Physiol. 141, 467–478 (2013).
Pan, J. et al. Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Nat. Commun. 3, 714 (2012).
Rajendra, S. et al. Startle disease mutations reduce the agonist sensitivity of the human inhibitory glycine receptor. J. Biol. Chem. 269, 18739–18742 (1994).
Lee, W.Y. & Sine, S.M. Principal pathway coupling agonist binding to channel gating in nicotinic receptors. Nature 438, 243–247 (2005).
Lape, R., Plested, A.J., Moroni, M., Colquhoun, D. & Sivilotti, L.G. The α1K276E startle disease mutation reveals multiple intermediate states in the gating of glycine receptors. J. Neurosci. 32, 1336–1352 (2012).
daCosta, C.J., Free, C.R. & Sine, S.M. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors. Nat. Commun. 6, 8057 (2015).
Purohit, P., Bruhova, I., Gupta, S. & Auerbach, A. Catch-and-hold activation of muscle acetylcholine receptors having transmitter binding site mutations. Biophys. J. 107, 88–99 (2014).
Lape, R., Colquhoun, D. & Sivilotti, L.G. On the nature of partial agonism in the nicotinic receptor superfamily. Nature 454, 722–727 (2008).
Burzomato, V., Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. Single-channel behavior of heteromeric alpha1beta glycine receptors: an attempt to detect a conformational change before the channel opens. J. Neurosci. 24, 10924–10940 (2004).
Kussius, C.L. & Popescu, G.K. Kinetic basis of partial agonism at NMDA receptors. Nat. Neurosci. 12, 1114–1120 (2009).
Schorge, S., Elenes, S. & Colquhoun, D. Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits. J. Physiol. (Lond.) 569, 395–418 (2005).
Swanson, G.T., Kamboj, S.K. & Cull-Candy, S.G. Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J. Neurosci. 17, 58–69 (1997).
Auerbach, A. Dose-response analysis when there is a correlation between affinity and efficacy. Mol. Pharmacol. 89, 297–302 (2016).
Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).
Hilf, R.J. & Dutzler, R. Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457, 115–118 (2009).
Bocquet, N. et al. X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457, 111–114 (2009).
Hilf, R.J. & Dutzler, R. X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452, 375–379 (2008).
Sauguet, L. et al. Crystal structures of a pentameric ligand-gated ion channel provide a mechanism for activation. Proc. Natl. Acad. Sci. USA 111, 966–971 (2014).
Gonzalez-Gutierrez, G. & Grosman, C. The atypical cation-conduction and gating properties of ELIC underscore the marked functional versatility of the pentameric ligand-gated ion-channel fold. J. Gen. Physiol. 146, 15–36 (2015).
Dellisanti, C.D. et al. Site-directed spin labeling reveals pentameric ligand-gated ion channel gating motions. PLoS Biol. 11, e1001714 (2013).
Hibbs, R.E. & Gouaux, E. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474, 54–60 (2011).
Althoff, T., Hibbs, R.E., Banerjee, S. & Gouaux, E. X-ray structures of GluCl in apo states reveal a gating mechanism of Cys-loop receptors. Nature 512, 333–337 (2014).
Purohit, P., Gupta, S., Jadey, S. & Auerbach, A. Functional anatomy of an allosteric protein. Nat. Commun. 4, 2984 (2013).
Grosman, C., Zhou, M. & Auerbach, A. Mapping the conformational wave of acetylcholine receptor channel gating. Nature 403, 773–776 (2000).
Cymes, G.D., Ni, Y. & Grosman, C. Probing ion-channel pores one proton at a time. Nature 438, 975–980 (2005).
Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. The activation mechanism of alpha1 homomeric glycine receptors. J. Neurosci. 24, 895–906 (2004).
Rayes, D., De Rosa, M.J., Sine, S.M. & Bouzat, C. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors. J. Neurosci. 29, 6022–6032 (2009).
Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).
Alam, A. & Jiang, Y. High-resolution structure of the open NaK channel. Nat. Struct. Mol. Biol. 16, 30–34 (2009).
Dürr, K.L. et al. Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states. Cell 158, 778–792 (2014).
Chen, L., Dürr, K.L. & Gouaux, E. X-ray structures of AMPA receptor-cone snail toxin complexes illuminate activation mechanism. Science 345, 1021–1026 (2014).
Yelshanskaya, M.V., Li, M. & Sobolevsky, A.I. Structure of an agonist-bound ionotropic glutamate receptor. Science 345, 1070–1074 (2014).
Sobolevsky, A.I., Yelshansky, M.V. & Wollmuth, L.P. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378 (2004).
Lee, C.-H. et al. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511, 191–197 (2014).
Karakas, E. & Furukawa, H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344, 992–997 (2014).
Weston, M.C., Schuck, P., Ghosal, A., Rosenmund, C. & Mayer, M.L. Conformational restriction blocks glutamate receptor desensitization. Nat. Struct. Mol. Biol. 13, 1120–1127 (2006).
Carbone, A.L. & Plested, A.J. Coupled control of desensitization and gating by the ligand binding domain of glutamate receptors. Neuron 74, 845–857 (2012).
Klein, R.M. & Howe, J.R. Effects of the lurcher mutation on GluR1 desensitization and activation kinetics. J. Neurosci. 24, 4941–4951 (2004).
Yelshansky, M.V., Sobolevsky, A.I., Jatzke, C. & Wollmuth, L.P. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J. Neurosci. 24, 4728–4736 (2004).
Yelshanskaya, M.V., Saotome, K., Singh, A.K. & Sobolevsky, A.I. Probing intersubunit interfaces in AMPA-subtype ionotropic glutamate receptors. Sci. Rep. 6, 19082 (2016).
Das, U., Kumar, J., Mayer, M.L. & Plested, A.J. Domain organization and function in GluK2 subtype kainate receptors. Proc. Natl. Acad. Sci. USA 107, 8463–8468 (2010).
Gielen, M., Siegler Retchless, B., Mony, L., Johnson, J.W. & Paoletti, P. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009).
Wilding, T.J., Lopez, M.N. & Huettner, J.E. Radial symmetry in a chimeric glutamate receptor pore. Nat. Commun. 5, 3349 (2014).
Auerbach, A. & Akk, G. Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. J. Gen. Physiol. 112, 181–197 (1998).
Colquhoun, D. & Sakmann, B. Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J. Physiol. (Lond.) 369, 501–557 (1985).
daCosta, C.J., Free, C.R., Corradi, J., Bouzat, C. & Sine, S.M. Single-channel and structural foundations of neuronal α7 acetylcholine receptor potentiation. J. Neurosci. 31, 13870–13879 (2011).
Hosie, A.M., Wilkins, M.E., da Silva, H.M. & Smart, T.G. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486–489 (2006).
Gielen, M., Thomas, P. & Smart, T.G. The desensitization gate of inhibitory Cys-loop receptors. Nat. Commun. 6, 6829 (2015).
Gill, S.B., Veruki, M.L. & Hartveit, E. Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina. J. Physiol. (Lond.) 575, 739–759 (2006).
Jones, M.V. & Westbrook, G.L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191 (1995).
Zhu, W.J. & Vicini, S. Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states. J. Neurosci. 17, 4022–4031 (1997).
Franke, C., Hatt, H., Parnas, H. & Dudel, J. Recovery from the rapid desensitization of nicotinic acetylcholine receptor channels on mouse muscle. Neurosci. Lett. 140, 169–172 (1992).
Elenes, S. & Auerbach, A. Desensitization of diliganded mouse muscle nicotinic acetylcholine receptor channels. J. Physiol. (Lond.) 541, 367–383 (2002).
Tovar, K.R. & Westbrook, G.L. Amino-terminal ligands prolong NMDA receptor-mediated EPSCs. J. Neurosci. 32, 8065–8073 (2012).
Karakas, E., Simorowski, N. & Furukawa, H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475, 249–253 (2011).
Teissére, J.A. & Czajkowski, C. A β-strand in the γ2 subunit lines the benzodiazepine binding site of the GABA A receptor: structural rearrangements detected during channel gating. J. Neurosci. 21, 4977–4986 (2001).
Lynch, G. Glutamate-based therapeutic approaches: ampakines. Curr. Opin. Pharmacol. 6, 82–88 (2006).
Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).
Franks, N.P. & Lieb, W.R. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 254, 427–430 (1991).
Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389, 385–389 (1997).
Yip, G.M. et al. A propofol binding site on mammalian GABAA receptors identified by photolabeling. Nat. Chem. Biol. 9, 715–720 (2013).
Li, G.D. et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci. 26, 11599–11605 (2006).
Nury, H. et al. X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel. Nature 469, 428–431 (2011).
Sanna, E., Garau, F. & Harris, R.A. Novel properties of homomeric beta 1 gamma-aminobutyric acid type A receptors: actions of the anesthetics propofol and pentobarbital. Mol. Pharmacol. 47, 213–217 (1995).
Liebeskind, B.J., Hillis, D.M. & Zakon, H.H. Convergence of ion channel genome content in early animal evolution. Proc. Natl. Acad. Sci. USA 112, E846–E851 (2015).
Gielen, M.C., Lumb, M.J. & Smart, T.G. Benzodiazepines modulate GABAA receptors by regulating the preactivation step after GABA binding. J. Neurosci. 32, 5707–5715 (2012).
Plested, A.J.R., Vijayan, R., Biggin, P.C. & Mayer, M.L. Molecular basis of kainate receptor modulation by sodium. Neuron 58, 720–735 (2008).
Dawe, G.B. et al. Defining the structural relationship between kainate-receptor deactivation and desensitization. Nat. Struct. Mol. Biol. 20, 1054–1061 (2013).
Herguedas, B. et al. Structure and organization of heteromeric AMPA-type glutamate receptors. Science http://dx.doi.org/10.1126/science.aad3873 (2016).
Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).
Carbone, A.L. & Plested, A.J. Superactivation of AMPA receptors by auxiliary proteins. Nat. Commun. 7, 10178 (2016).
Miwa, J.M. et al. lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23, 105–114 (1999).
Nichols, W.A. et al. Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum. J. Biol. Chem. 289, 31423–31432 (2014).
Zhang, W., Howe, J.R. & Popescu, G.K. Distinct gating modes determine the biphasic relaxation of NMDA receptor currents. Nat. Neurosci. 11, 1373–1375 (2008).
Zhang, W., Devi, S.P., Tomita, S. & Howe, J.R. Auxiliary proteins promote modal gating of AMPA- and kainate-type glutamate receptors. Eur. J. Neurosci. 39, 1138–1147 (2014).
Doudna, J.A. & Charpentier, E. Genome editing: the new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Spurny, R. et al. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proc. Natl. Acad. Sci. USA 109, E3028–E3034 (2012).
Acknowledgements
I thank J. Baranovic, M. Poulsen, C. Eibl, C. Czajkowski and C. Grosman for comments on the manuscript. Figures were prepared with PyMOL (http://www.pymol.org/) and the UCSF Chimera package119. Chimera was developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Plested, A. Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 23, 494–502 (2016). https://doi.org/10.1038/nsmb.3214
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nsmb.3214
This article is cited by
-
Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization
Nature Communications (2021)
-
Tracking Membrane Protein Dynamics in Real Time
The Journal of Membrane Biology (2021)
-
Thermophoretic analysis of ligand-specific conformational states of the inhibitory glycine receptor embedded in copolymer nanodiscs
Scientific Reports (2020)