Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2

An Erratum to this article was published on 06 February 2017

This article has been updated

Abstract

Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit–based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolutionarily conserved Yxxφ motif defines a subset of integrin α-chains.
Figure 2: Structural analysis of the integrin α4–AP2 C-μ2 complex.
Figure 3: Yxxφ motif controls integrin recruitment to CCPs.
Figure 4: Yxxφ motif regulates integrin α2 and α4 endocytosis.
Figure 5: Introduction of the Yxxφ motif induces endocytosis of integrin αV.
Figure 6: Yxxφ mutagenesis impairs cell migration mediated by α2 and α4 integrin.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 08 December 2016

    In the version of this article initially published, the x-axis of the bottom left graph in Figure 4d was incorrectly labeled as showing time in minutes; in actuality, the data in the graph align with the conditions indicated for the blot images above. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Campbell, I.D. & Humphries, M.J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wickström, S.A., Radovanac, K. & Fässler, R. Genetic analyses of integrin signaling. Cold Spring Harb. Perspect. Biol. 3, a005116 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Humphries, J.D., Byron, A. & Humphries, M.J. Integrin ligands at a glance. J. Cell Sci. 119, 3901–3903 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Hemler, M.E., Kassner, P.D. & Chan, B.M. Functional roles for integrin alpha subunit cytoplasmic domains. Cold Spring Harb. Symp. Quant. Biol. 57, 213–220 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Ivaska, J. et al. Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J. Cell Biol. 147, 401–416 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mattila, E. et al. Negative regulation of EGFR signalling through integrin-α1β1-mediated activation of protein tyrosine phosphatase TCPTP. Nat. Cell Biol. 7, 78–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Arjonen, A., Alanko, J., Veltel, S. & Ivaska, J. Distinct recycling of active and inactive β1 integrins. Traffic 13, 610–625 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P. & Ivaska, J. Integrin traffic: the update. J. Cell Sci. 128, 839–852 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ezratty, E.J., Bertaux, C., Marcantonio, E.E. & Gundersen, G.G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Caswell, P.T., Vadrevu, S. & Norman, J.C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10, 843–853 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Pellinen, T. & Ivaska, J. Integrin traffic. J. Cell Sci. 119, 3723–3731 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Mai, A. et al. Competitive binding of Rab21 and p120RasGAP to integrins regulates receptor traffic and migration. J. Cell Biol. 194, 291–306 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caswell, P.T. et al. Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell 13, 496–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Traub, L.M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).

    CAS  PubMed  Google Scholar 

  15. Royle, S.J. et al. Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J. Cell Sci. 118, 3073–3080 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. De Franceschi, N. et al. Longin and GAF domains: structural evolution and adaptation to the subcellular trafficking machinery. Traffic 15, 104–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Chouhan, B.S. et al. Early chordate origin of the vertebrate integrin αI domains. PLoS One 9, e112064 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnson, M.S., Lu, N., Denessiouk, K., Heino, J. & Gullberg, D. Integrins during evolution: evolutionary trees and model organisms. Biochim. Biophys. Acta 1788, 779–789 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Hedges, S.B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Bouvard, D., Pouwels, J., De Franceschi, N. & Ivaska, J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat. Rev. Mol. Cell Biol. 14, 430–442 (2013).

    Article  PubMed  Google Scholar 

  21. Höning, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell 18, 519–531 (2005).

    Article  PubMed  Google Scholar 

  22. Bhunia, A., Tang, X.Y., Mohanram, H., Tan, S.M. & Bhattacharjya, S. NMR solution conformations and interactions of integrin alphaLbeta2 cytoplasmic tails. J. Biol. Chem. 284, 3873–3884 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Liu, J. et al. Structural mechanism of integrin inactivation by filamin. Nat. Struct. Mol. Biol. 22, 383–389 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Metcalf, D.G. et al. NMR analysis of the alphaIIb beta3 cytoplasmic interaction suggests a mechanism for integrin regulation. Proc. Natl. Acad. Sci. USA 107, 22481–22486 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, J. et al. Structure of an integrin alphaIIb beta3 transmembrane-cytoplasmic heterocomplex provides insight into integrin activation. Proc. Natl. Acad. Sci. USA 106, 17729–17734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonet, R., Vakonakis, I. & Campbell, I.D. Characterization of 14-3-3-ζ interactions with integrin tails. J. Mol. Biol. 425, 3060–3072 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bridgewater, R.E., Norman, J.C. & Caswell, P.T. Integrin trafficking at a glance. J. Cell Sci. 125, 3695–3701 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aguet, F., Antonescu, C.N., Mettlen, M., Schmid, S.L. & Danuser, G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell 26, 279–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pellinen, T. et al. Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J. Cell Biol. 173, 767–780 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Motley, A.M. et al. Functional analysis of AP-2 alpha and mu2 subunits. Mol. Biol. Cell 17, 5298–5308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Somasundaram, B., Norman, J.C. & Mahaut-Smith, M.P. Primaquine, an inhibitor of vesicular transport, blocks the calcium-release-activated current in rat megakaryocytes. Biochem. J. 309, 725–729 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell 13, 15–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Teckchandani, A., Mulkearns, E.E., Randolph, T.W., Toida, N. & Cooper, J.A. The clathrin adaptor Dab2 recruits EH domain scaffold proteins to regulate integrin β1 endocytosis. Mol. Biol. Cell 23, 2905–2916 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sandri, C. et al. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res. 22, 1479–1501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pellinen, T. et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev. Cell 15, 371–385 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Wennerberg, K. et al. Beta 1 integrin-dependent and -independent polymerization of fibronectin. J. Cell Biol. 132, 227–238 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Mai, A. et al. Distinct c-Met activation mechanisms induce cell rounding or invasion through pathways involving integrins, RhoA and HIP1. J. Cell Sci. 127, 1938–1952 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Chao, W.T. & Kunz, J. Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett. 583, 1337–1343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hirst, J., Irving, C. & Borner, G.H. Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14, 153–164 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, L. et al. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J. Biol. Chem. 282, 31631–31642 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Morse, E.M., Brahme, N.N. & Calderwood, D.A. Integrin cytoplasmic tail interactions. Biochemistry 53, 810–820 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Ivaska, J. & Heino, J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu. Rev. Cell Dev. Biol. 27, 291–320 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Zaidel-Bar, R. & Geiger, B. The switchable integrin adhesome. J. Cell Sci. 123, 1385–1388 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Calderwood, D.A. et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl. Acad. Sci. USA 100, 2272–2277 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mishra, S.K. et al. Dual engagement regulation of protein interactions with the AP-2 adaptor alpha appendage. J. Biol. Chem. 279, 46191–46203 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Marchler-Bauer, A. et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Finn, R.D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Curwen, V. et al. The Ensembl automatic gene annotation system. Genome Res. 14, 942–950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Owen, D.J. & Evans, P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282, 1327–1332 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Parsons, M., Messent, A.J., Humphries, J.D., Deakin, N.O. & Humphries, M.J. Quantification of integrin receptor agonism by fluorescence lifetime imaging. J. Cell Sci. 121, 265–271 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Laukaitis, C.M., Webb, D.J., Donais, K. & Horwitz, A.F. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427–1440 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vonderheit, A. & Helenius, A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol. 3, e233 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Virtakoivu, R. et al. Vimentin-ERK signaling uncouples slug gene regulatory function. Cancer Res. 75, 2349–2362 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Gu, Z., Noss, E.H., Hsu, V.W. & Brenner, M.B. Integrins traffic rapidly via circular dorsal ruffles and macropinocytosis during stimulated cell migration. J. Cell Biol. 193, 61–70 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M. Humphries (University of Manchester), R. Horwitz (University of Virginia), A. Helenius (Swiss Federal Institute of Technology (ETH)), M. Davidson (Florida State University), M. Robinson (University of Cambridge Institute for Medical Research (CIMR)) and S. Johansson (Uppsala University) are acknowledged for plasmids and cells, and S. Miller (CIMR) is acknowledged for assistance with ITC. We thank J. Siivonen, and P. Laasola for excellent technical assistance, H. Baghirov for help with the image analysis and M. Laasola for graphics generation; Turku Centre for Biotechnology Imaging Core facility and M. Saari for help with imaging; and H. Hamidi for scientific writing and editing of the manuscript. We gratefully acknowledge the following funding sources: N.D.F., FinPharma Doctoral Program, Instrumentarium Foundation, Orion Research Foundation, Liv och Halsa Foundation, Finsk-Norska Medicinska Stiftelsen and the Magnus Ehrnrooth Foundation; and J.I., Academy of Finland CoE, European Research Council Consolidator Grant, the Sigrid Juselius Foundation, the Finnish Heart Foundation and the Finnish Cancer Organizations. D.J.O., A.G.W. and T.W. are funded by Wellcome Trust fellowship 090909 (D.J.O.).

Author information

Authors and Affiliations

Authors

Contributions

J.I. supervised the cell-biological part of the study, carried out experiments, analyzed the data and wrote the manuscript with the contribution of N.D.F., G.M. and D.J.O. A.G.W., T.A.W. and D.J.O. carried out the ITC and crystallography. N.D.F. conceived the study and designed, carried out and analyzed most of the experiments with crucial help from A.A., N.E. and J.P. N.D.F. and K.D. carried out the evolutionary studies.

Corresponding author

Correspondence to Johanna Ivaska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Evolutionary and splicing analysis of Yxxφ-motif distribution.

a: Comparison of the distribution of the Yxxφ motif across integrin α-subunits in Homo Sapiens and Clupeocephala. b: Alignment of membrane proximal and cytoplasmic region of splice variants of α3, α6 and α7 integrins from Homo Sapiens. Uniprot accession codes are indicated; the Yxxφ motif is highlighted in red. c: Residue variation across 6 mammals in membrane-proximal and cytoplasmic region of ITAD, ITAE, ITAM, ITAX (organisms: Homo Sapiens, Mus Musculus, Canis Familiaris, Equus Caballus, Sus Scrofa, Bos Taurus). Values on the Y-axis indicate the number of substitution for each residue. d: Residue variation across 10 organisms in membrane-proximal and cytoplasmic region of ITA2 and ITA4 (Homo Sapiens, Mus Musculus, Canis Familiaris, Equus Caballus, Sus Scrofa, Bos Taurus, Gallus Gallus, Xenopus Tropicalis, Anolis Carolinensis and Danio Rerio). Asterisks indicate substitutions that are compatible with the Yxxφ motif.

Supplementary Figure 2 Characterization of C-μ2 interaction with α-integrins.

a: Purification of recombinant C-μ2. Enrichment of AP2µ in subsequent purification steps is shown, along with immunoblot with AP2μ Ab. b: Sequences of the peptides used in this study. c: Pulldown assay with recombinant C-μ2and integrin biotinylated peptides. Equal amount of AP2μ and equimolar peptide concentrations were added to each sample. Neg. CTRL= beads alone. Tenfold excess of soluble, unlabelled α2 peptide was pre-incubated with AP2μ CT. d: Representative isothermal titration calorimetry of integrin α2 peptide binding to C-μ2 (magenta). No detectable binding was seen for integrin α5 peptide (black). e: Proximity Ligation assay between endogenous AP2 and endogenous α5 integrin.

Supplementary Figure 3 Controls and additional information.

Related to Figures 2 and 3. a: Modelling of a tyrosine-phosphorylated integrin α4 peptide (yellow backbone) in the C-μ2 binding pocket. The phosphate head group of pY1009 (red) would not fit in the binding pocket. b: Co-endocytosis of AP2μ and endogenous α2-integrin in MDA-MB-231 cells expressing AP2μ-mCherry labelled with α2-integrin antibody (MCA2025) during live cell imaging. TIRF plane is shown. Dynamics of AP2μ-RFP and endogenous α2-integrin co-endocytosis was measured with live cell TIRFM over a 100 sec period. Fluorescence intensities of a single AP2μ positive pit were plotted over time. c: Sequence of the membrane-proximal and cytoplasmic domains of GFP-tagged integrin constructs used in this study. d: Surface α2 integrin levels detected by antibody labeling and fluorescence-activated cell sorting (FACS) analysis on HeLa cells. Solid red: Control IgG. Black line: GFP α2 WT cells stained with anti-α2 antibody; blue line: GFP α2 AxxA stained with anti-α2 antibody. GFP-positive cells were gated. e: Surface α4 integrin levels detected by antibody labeling and fluorescence-activated cell sorting (FACS) analysis on HeLa cells. Solid red: Control IgG. Black line: GFP α4 WT stained with anti-α4 antibody; blue line: GFP α4 AxxA stained with anti-α4 antibody. GFP-positive cells were gated.

Supplementary Figure 4 Subcellular localization of α2-GFP WT or AxxA mutant.

Co-localization analysis of α2-GFP WT or AxxA mutant in HEK293 cells labelled with the ER-TrackerTM or overexpressing different Rab GTPases as indicated. Yellow boxes indicate the regions of interest (ROI) enlarged in the black and white images. Arrows point to areas of overlapping signal. Images are single planes from confocal stacks acquired with 63x magnification.

Supplementary Figure 5 Controls and additional information.

Related to Figures 4 and 5. a: Western blot analysis of AP2μ, α2-integrin and tubulin levels in AP2μ and control siRNA transfected HeLa cells. b: AP2μ or control silenced HeLa cells stained for endogenous AP2 α-adaptin (white) and dapi (blue). c: Biotin-based endocytosis assays in HEK293 cells transfected with GFP-tagged α2-integrin WT or AxxM mutant. Biotin signal was normalized against total α2 amount measured from the GFP blot. Time point: 15 minutes (mean±SEM; n=3; *, p<0.05 (unpaired Student’s t test; 2-tails distribution)). d: Biotin-based endocytosis assays in HEK293 cells expressing either GFP-tagged α4-integrin WT or AxxA mutant in the presence or absence of primaquine treatment. Biotin signal was normalized against total α4 amount measured from the GFP blot. Time point: 15 minutes. Bars indicate mean±s.e.m.; n=4 (n=biological replicates, each one being an independent cell culture); *, p<0.05 (unpaired Student’s t test; 2-tails distribution). e: Antibody-based endocytosis assay using PLA to detect the active or inactive α2β1 heterodimers in AP2μ silenced background. Endocytosis of α2 was allowed for 15 min after which cells were fixed, permeabilized and counterstained with active and inactive epitope recognizing anti-β1 antibodies (clones 12G10 and 4B4, respectively). The endocytosed PLA signal was normalized against total cell surface α2β1 levels (α2+4B4 for inactive and α2+12G10 for active heterodimers). Bars indicate mean±s.e.m.; n=2 (n=biological replicates, each one being an independent cell culture. In total, 120–144 cells were analyzed for each condition); ***, p<0.0001 (Mann Whitney test; 2-tails distribution). f: Biotin-based endocytosis assays in HEK293 cells expressing GFP-tagged α5-integrin WT or AxxxA mutant. Endocytosis was allowed for 10 min and biotin signal was normalized against total α5 amount measured from the GFP blot. n=3 (n=biological replicates, each one being an independent cell culture). g: Western blot analysis of AP2μ, α2-integrin and tubulin levels in HEK293 stably expressing AP2μ-myc WT or F174A/D176S mutant. h: Western blot analysis of AP2μ, α2-integrin and tubulin levels in HEK293 stably expressing AP2μ-myc WT or F174A/D176S mutant and transfected with control or AP2μ siRNA. i: Surface α2 integrin levels detected by antibody labeling and fluorescence-activated cell sorting (FACS) analysis on GD25b1A cells. Solid red: α2 Ab staining of non-transfected cells. Red line: α2-GFP WT-gated cells; blue line: α2-GFP AxxA-gated cells. j: Surface α4 integrin levels detected by antibody labeling and fluorescence-activated cell sorting (FACS) analysis on GD25b1A cells. Solid red: α4 Ab staining of non-transfected cells. Red line: α4-GFP WT-gated cells; blue line: α4-GFP AxxA-gated cells. k: Retraction fibers in HEK293 cells plated on collagen I and expressing either α2-GFP WT or AxxA mutant.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1407 kb)

Supplementary Data Set 1

Uncropped blots (PDF 197 kb)

AP2μ–integrin α2 coendocytosis event

Single ROI of AP2μ positive clathrin pit is shown (2μm square). MDA-MB-231 cells were transfected with AP2μ-mCherry and endogenous α2-integrin was labelled using antibody (MCA2025). TIRF images were captured in 1s intervals. Movie is shown 20FPS. (AVI 121 kb)

Localization and dynamics of α2-GFP WT

Single plane of a HEK 293 cell plated on collagen I-coated glass-bottom dish. Localization and dynamics of α2-GFP WT-positive vesicles are shown. (AVI 997 kb)

Localization and dynamics of α2-GFP AxxA

Single plane of a HEK 293 cell plated on collagen I-coated glass-bottom dish. Membrane localization and dynamics of α2-GFP AxxA at lamellipodium are shown. (AVI 1654 kb)

HEK 293 cell expressing α2-GFP WT spreading on collagen I

Bottom plane of a HEK 293 cell expressing α2-GFP WT spreading on Collagen I. α2-GFPpositive vesicles and dynamic tubular compartments are visible. (AVI 5234 kb)

HEK 293 cell expressing α2-GFP AxxA spreading on collagen I

Bottom plane of a HEK 293 cell expressing α2-GFP AxxA spreading on Collagen I. Plasma membrane localization of α2-GFP is shown. (AVI 2963 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Franceschi, N., Arjonen, A., Elkhatib, N. et al. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat Struct Mol Biol 23, 172–179 (2016). https://doi.org/10.1038/nsmb.3161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing