Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ribosome-associated protein quality control

Abstract

Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Causes of aberrant translation elongation.
Figure 2: Primary steps and factors of ribosome-associated quality control.
Figure 3: Working model for recognition of a stalled ribosome by recycling factors.
Figure 4: Steps of RQC assembly on 60S–peptidyl-tRNA complexes.
Figure 5: CAT-tail formation by Rqc2p.

Similar content being viewed by others

References

  1. van Hoof, A. & Wagner, E.J. A brief survey of mRNA surveillance. Trends Biochem. Sci. 36, 585–592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. LaRiviere, F.J., Cole, S.E., Ferullo, D.J. & Moore, M.J. A late-acting quality control process for mature eukaryotic rRNAs. Mol. Cell 24, 619–626 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Yadavalli, S.S. & Ibba, M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. Adv. Protein Chem. Struct. Biol. 86, 1–43 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Hopfield, J.J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zaher, H.S. & Green, R. Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolff, S., Weissman, J.S. & Dillin, A. Differential scales of protein quality control. Cell 157, 52–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, J.W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ishimura, R. et al. RNA function: ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration. Science 345, 455–459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Scheper, G.C., van der Knaap, M.S. & Proud, C.G. Translation matters: protein synthesis defects in inherited disease. Nat. Rev. Genet. 8, 711–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Anckar, J. & Sistonen, L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu. Rev. Biochem. 80, 1089–1115 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Pellegrino, M.W., Nargund, A.M. & Haynes, C.M. Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta 1833, 410–416 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Gregersen, N., Bross, P., Vang, S. & Christensen, J.H. Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet. 7, 103–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Roman, C., Cohn, L. & Calame, K. A dominant negative form of transcription activator mTFE3 created by differential splicing. Science 254, 94–97 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Ishigame, H., Mosaheb, M.M., Sanjabi, S. & Flavell, R.A. Truncated form of TGF-βRII, but not its absence, induces memory CD8+ T cell expansion and lymphoproliferative disorder in mice. J. Immunol. 190, 6340–6350 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Pechmann, S., Willmund, F. & Frydman, J. The ribosome as a hub for protein quality control. Mol. Cell 49, 411–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, F., Canadeo, L.A. & Huibregtse, J.M. Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 114, 127–133 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simms, C.L., Hudson, B.H., Mosior, J.W., Rangwala, A.S. & Zaher, H.S. An active role for the ribosome in determining the fate of oxidized mRNA. Cell Reports 9, 1256–1264 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Meaux, S. & Van Hoof, A. Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay. RNA 12, 1323–1337 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doma, M.K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Letzring, D.P., Dean, K.M. & Grayhack, E.J. Control of translation efficiency in yeast by codon-anticodon interactions. RNA 16, 2516–2528 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lareau, L.F., Hite, D.H., Hogan, G.J. & Brown, P.O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 3, e01257 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wilson, D.N. & Beckmann, R. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Curr. Opin. Struct. Biol. 21, 274–282 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Cao, J. & Geballe, A.P. Inhibition of nascent-peptide release at translation termination. Mol. Cell. Biol. 16, 7109–7114 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Frischmeyer, P.A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. van Hoof, A., Frischmeyer, P.A., Dietz, H.C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Dimitrova, L.N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40, 238–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Shoemaker, C.J. & Green, R. Translation drives mRNA quality control. Nat. Struct. Mol. Biol. 19, 594–601 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Losson, R. & Lacroute, F. Interference of nonsense mutations with eukaryotic messenger RNA stability. Proc. Natl. Acad. Sci. USA 76, 5134–5137 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Popp, M.W.-L. & Maquat, L.E. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu. Rev. Genet. 47, 139–165 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maquat, L.E., Kinniburgh, A.J., Rachmilewitz, E.A. & Ross, J. Unstable beta-globin mRNA in mRNA-deficient beta o thalassemia. Cell 27, 543–553 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Shoemaker, C.J., Eyler, D.E. & Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369–372 (2010).This study together with ref. 37 provides rigorous biochemical evidence that the Dom34–Hbs1 complex mediates the splitting of translationally stalled ribosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shoemaker, C.J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl. Acad. Sci. USA 108, E1392–E1398 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pisareva, V.P., Skabkin, M.A., Hellen, C.U.T., Pestova, T.V. & Pisarev, A.V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pisarev, A.V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bengtson, M.H. & Joazeiro, C.A.P. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).This paper reports the identification of Ltn1 as a ubiquitin ligase that may target nascent proteins on stalled ribosomes for proteasomal degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chu, J. et al. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration. Proc. Natl. Acad. Sci. USA 106, 2097–2103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Himeno, H., Nameki, N., Kurita, D., Muto, A. & Abo, T. Ribosome rescue systems in bacteria. Biochimie 114, 102–112 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Karzai, A.W., Roche, E.D. & Sauer, R.T. The SsrA–SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7, 449–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Brandman, O. et al. A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151, 1042–1054 (2012).This paper, together with ref. 44 , used different genetic strategies to identify many of the key factors involved in the RQC pathway and link them to the 60S ribosomal subunit.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Defenouillère, Q. et al. Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc. Natl. Acad. Sci. USA 110, 5046–5051 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Verma, R., Oania, R.S., Kolawa, N.J. & Deshaies, R.J. Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome. eLife 2, e00308 (2013).This study provides evidence that the AAA+ ATPase Cdc48 facilitates extraction of stalled protein products from the ribosome for subsequent proteasomal degradation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Stolz, A., Hilt, W., Buchberger, A. & Wolf, D.H. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Shao, S., von der Malsburg, K. & Hegde, R.S. Listerin-dependent nascent protein ubiquitination relies on ribosome subunit dissociation. Mol. Cell 50, 637–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Perara, E., Rothman, R.E. & Lingappa, V.R. Uncoupling translocation from translation: implications for transport of proteins across membranes. Science 232, 348–352 (1986).

    Article  CAS  PubMed  Google Scholar 

  49. Shao, S. & Hegde, R.S. Reconstitution of a minimal ribosome-associated ubiquitination pathway with purified factors. Mol. Cell 55, 880–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chiabudini, M. et al. Release factor eRF3 mediates premature translation termination on polylysine-stalled ribosomes in Saccharomyces cerevisiae. Mol. Cell. Biol. 34, 4062–4076 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chiabudini, M., Conz, C., Reckmann, F. & Rospert, S. Ribosome-associated complex and Ssb are required for translational repression induced by polylysine segments within nascent chains. Mol. Cell. Biol. 32, 4769–4779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Becker, T. et al. Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol. 18, 715–720 (2011).This study reports the cryo-EM structure of a stalled ribosome bound to the Dom34–Hbs1 complex involved in its recognition and splitting.

    Article  CAS  PubMed  Google Scholar 

  53. Jackson, R.J., Hellen, C.U.T. & Pestova, T.V. Termination and post-termination events in eukaryotic translation. Adv. Protein Chem. Struct. Biol. 86, 45–93 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Dever, T.E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 4, a013706 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Brown, A., Shao, S., Murray, J., Hegde, R.S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shao, S., Brown, A., Santhanam, B. & Hegde, R.S. Structure and assembly pathway of the ribosome quality control complex. Mol. Cell 57, 433–444 (2015).This study reconstituted RQC assembly and ubiquitination with purified factors, ordered the steps in the reaction and determined the cryo-EM structure of the 60S–NEMF–Listerin complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsuboi, T. et al. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell 46, 518–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Guydosh, N.R. & Green, R. Dom34 rescues ribosomes in 3′ untranslated regions. Cell 156, 950–962 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bhushan, S. et al. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol. Cell 40, 138–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Kuroha, K. et al. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep. 11, 956–961 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Letzring, D.P., Wolf, A.S., Brule, C.E. & Grayhack, E.J. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA 19, 1208–1217 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rodrigo-Brenni, M.C. & Hegde, R.S. Design principles of protein biosynthesis-coupled quality control. Dev. Cell 23, 896–907 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Shen, P.S. et al. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347, 75–78 (2015).This study determined the structure of the 60S–RQC by cryo-EM, discovered CAT tails, and demonstrated their synthesis by an mRNA- and 40S-independent Rqc2-driven process.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lyumkis, D. et al. Structural basis for translational surveillance by the large ribosomal subunit-associated protein quality control complex. Proc. Natl. Acad. Sci. USA. 111, 15981–15986 (2014).This study reports the cryo-EM structure of the 60S–RQC, in which the position of Rqc2 was first identified at the 60S interface bound to a P-site tRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gerber, A.P. & Keller, W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 286, 1146–1149 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. von der Malsburg, K., Shao, S. & Hegde, R.S. The ribosome quality control pathway can access nascent polypeptides stalled at the Sec61 translocon. Mol. Biol. Cell 26, 2168–2180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oma, Y., Kino, Y., Toriumi, K., Sasagawa, N. & Ishiura, S. Interactions between homopolymeric amino acids (HPAAs). Protein Sci. 16, 2195–2204 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Satyal, S.H. et al. Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 97, 5750–5755 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shalgi, R. et al. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell 49, 439–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, B., Han, Y. & Qian, S.-B. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol. Cell 49, 453–463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Higgins, R. et al. The Unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol. Cell 59, 35–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Merret, R. et al. Heat-induced ribosome pausing triggers mRNA co-translational decay in Arabidopsis thaliana. Nucleic Acids Res. 43, 4121–4132 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Merret, R. et al. XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress. Cell Reports 5, 1279–1293 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Matsuda, R., Ikeuchi, K., Nomura, S. & Inada, T. Protein quality control systems associated with no-go and nonstop mRNA surveillance in yeast. Genes Cells 19, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, F., Durfee, L.A. & Huibregtse, J.M. A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell 50, 368–378 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lykke-Andersen, J. & Bennett, E.J. Protecting the proteome: eukaryotic cotranslational quality control pathways. J. Cell Biol. 204, 467–476 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Preissler, S. & Deuerling, E. Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37, 274–283 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Turner, G.C. & Varshavsky, A. Detecting and measuring cotranslational protein degradation in vivo. Science 289, 2117–2120 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Duttler, S., Pechmann, S. & Frydman, J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50, 379–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Himeno, H., Kurita, D. & Muto, A. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell. Front. Genet. 5, 66 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Komine, Y., Kitabatake, M., Yokogawa, T., Nishikawa, K. & Inokuchi, H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. USA 91, 9223–9227 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ushida, C., Himeno, H., Watanabe, T. & Muto, A. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res. 22, 3392–3396 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Ivanova, N., Pavlov, M.Y., Felden, B. & Ehrenberg, M. Ribosome rescue by tmRNA requires truncated mRNAs. J. Mol. Biol. 338, 33–41 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Shao for comments on this manuscript and A. Frost and P. Shen for help with figure preparation. This work was supported by the UK Medical Research Council (MC_UP_A022_1007 to R.S.H.), Stanford University (O.B.) and the US National Institutes of Health (1R01GM115968-01 to O.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Onn Brandman or Ramanujan S Hegde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandman, O., Hegde, R. Ribosome-associated protein quality control. Nat Struct Mol Biol 23, 7–15 (2016). https://doi.org/10.1038/nsmb.3147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing