Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of eIF6 release from the nascent 60S ribosomal subunit

Abstract

SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS–EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SBDS shields the active sites of the 60S subunit.
Figure 2: EFL1 and eIF6 compete for an overlapping binding site.
Figure 3: Rotational displacement of SBDS upon EFL1 binding.
Figure 4: Disease-related SBDS variants disrupt critical interactions with the 60S rRNA.
Figure 5: Mechanism of eIF6 release by SBDS and EFL1.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Lo, K.Y. et al. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39, 196–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boocock, G.R. et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101 (2003).

    CAS  PubMed  Google Scholar 

  3. Senger, B. et al. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8, 1363–1373 (2001).

    CAS  PubMed  Google Scholar 

  4. Menne, T.F. et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat. Genet. 39, 486–495 (2007).

    CAS  PubMed  Google Scholar 

  5. Finch, A.J. et al. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev. 25, 917–929 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong, C.C., Traynor, D., Basse, N., Kay, R.R. & Warren, A.J. Defective ribosome assembly in Shwachman-Diamond syndrome. Blood 118, 4305–4312 (2011).

    CAS  PubMed  Google Scholar 

  7. Gartmann, M. et al. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J. Biol. Chem. 285, 14848–14851 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Klinge, S., Voigts-Hoffmann, F., Leibundgut, M., Arpagaus, S. & Ban, N. Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334, 941–948 (2011).

    CAS  PubMed  Google Scholar 

  9. Ban, N. et al. A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 24, 165–169 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ceci, M. et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426, 579–584 (2003).

    CAS  PubMed  Google Scholar 

  11. Basu, U., Si, K., Warner, J.R. & Maitra, U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 21, 1453–1462 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Donadieu, J. et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia: experience of the French Severe Chronic Neutropenia Study Group. Haematologica 90, 45–53 (2005).

    PubMed  Google Scholar 

  13. De Keersmaecker, K. et al. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat. Genet. 45, 186–190 (2013).

    CAS  PubMed  Google Scholar 

  14. Shammas, C. et al. Structural and mutational analysis of the SBDS protein family: insight into the leukemia-associated Shwachman-Diamond Syndrome. J. Biol. Chem. 280, 19221–19229 (2005).

    CAS  PubMed  Google Scholar 

  15. Savchenko, A. et al. The Shwachman-Bodian-Diamond syndrome protein family is involved in RNA metabolism. J. Biol. Chem. 280, 19213–19220 (2005).

    CAS  PubMed  Google Scholar 

  16. Ng, C.L. et al. Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein. BMC Struct. Biol. 9, 32 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).

    CAS  PubMed  Google Scholar 

  18. Voorhees, R.M., Fernandez, I.S., Scheres, S.H. & Hegde, R.S. Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell 157, 1632–1643 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Khatter, H., Myasnikov, A.G., Natchiar, S.K. & Klaholz, B.P. Structure of the human 80S ribosome. Nature 520, 640–645 (2015).

    CAS  PubMed  Google Scholar 

  20. Greber, B.J. et al. Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J. Mol. Biol. 418, 145–160 (2012).

    CAS  PubMed  Google Scholar 

  21. Sulima, S.O. et al. Eukaryotic rpL10 drives ribosomal rotation. Nucleic Acids Res. 42, 2049–2063 (2014).

    CAS  PubMed  Google Scholar 

  22. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Anger, A.M. et al. Structures of the human and Drosophila 80S ribosome. Nature 497, 80–85 (2013).

    CAS  PubMed  Google Scholar 

  24. Graindorge, J.S. et al. Deletion of EFL1 results in heterogeneity of the 60 S GTPase-associated rRNA conformation. J. Mol. Biol. 352, 355–369 (2005).

    CAS  PubMed  Google Scholar 

  25. Schmeing, T.M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Becker, T. et al. Structure of the no-go mRNA decay complex Dom34-Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol. 18, 715–720 (2011).

    CAS  PubMed  Google Scholar 

  27. Basu, U., Si, K., Deng, H. & Maitra, U. Phosphorylation of mammalian eukaryotic translation initiation factor 6 and its Saccharomyces cerevisiae homologue Tif6p: evidence that phosphorylation of Tif6p regulates its nucleocytoplasmic distribution and is required for yeast cell growth. Mol. Cell. Biol. 23, 6187–6199 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ray, P. et al. The Saccharomyces cerevisiae 60 S ribosome biogenesis factor Tif6p is regulated by Hrr25p-mediated phosphorylation. J. Biol. Chem. 283, 9681–9691 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bussiere, C., Hashem, Y., Arora, S., Frank, J. & Johnson, A.W. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J. Cell Biol. 197, 747–759 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hauryliuk, V., Hansson, S. & Ehrenberg, M. Cofactor dependent conformational switching of GTPases. Biophys. J. 95, 1704–1715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Lancaster, L., Kiel, M.C., Kaji, A. & Noller, H.F. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111, 129–140 (2002).

    CAS  PubMed  Google Scholar 

  32. Wilson, D.N. et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24, 251–260 (2005).

    CAS  PubMed  Google Scholar 

  33. Gao, N., Zavialov, A.V., Ehrenberg, M. & Frank, J. Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J. Mol. Biol. 374, 1345–1358 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).

    CAS  PubMed  Google Scholar 

  35. Seshadri, A., Singh, N.S. & Varshney, U. Recycling of the posttermination complexes of Mycobacterium smegmatis and Escherichia coli ribosomes using heterologous factors. J. Mol. Biol. 401, 854–865 (2010).

    CAS  PubMed  Google Scholar 

  36. Hedges, J., West, M. & Johnson, A.W. Release of the export adapter, Nmd3p, from the 60S ribosomal subunit requires Rpl10p and the cytoplasmic GTPase Lsg1p. EMBO J. 24, 567–579 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Strunk, B.S., Novak, M.N., Young, C.L. & Karbstein, K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lebaron, S. et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 19, 744–753 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sengupta, J. et al. Characterization of the nuclear export adaptor protein Nmd3 in association with the 60S ribosomal subunit. J. Cell Biol. 189, 1079–1086 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Greber, B.J., Boehringer, D., Montellese, C. & Ban, N. Cryo-EM structures of Arx1 and maturation factors Rei1 and Jjj1 bound to the 60S ribosomal subunit. Nat. Struct. Mol. Biol. 19, 1228–1233 (2012).

    CAS  PubMed  Google Scholar 

  41. Bradatsch, B. et al. Structure of the pre-60S ribosomal subunit with nuclear export factor Arx1 bound at the exit tunnel. Nat. Struct. Mol. Biol. 19, 1234–1241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Valli, R. et al. Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms. Mol. Cytogenet. 6, 56 (2013).

    PubMed  PubMed Central  Google Scholar 

  43. Yokoyama, T. et al. Structural insights into initial and intermediate steps of the ribosome-recycling process. EMBO J. 31, 1836–1846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    CAS  PubMed  Google Scholar 

  45. Bai, X.C., Fernandez, I.S., McMullan, G. & Scheres, S.H. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2, e00461 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    CAS  PubMed  Google Scholar 

  47. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    PubMed  Google Scholar 

  48. Scheres, S.H. A Bayesian view on cryo-EM structure determination. J. Mol. Biol. 415, 406–418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Scheres, S.H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Klaholz, B.P., Myasnikov, A.G. & Van Heel, M. Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427, 862–865 (2004).

    CAS  PubMed  Google Scholar 

  51. Penczek, P.A., Frank, J. & Spahn, C.M. A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. J. Struct. Biol. 154, 184–194 (2006).

    CAS  PubMed  Google Scholar 

  52. Scheres, S.H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, S. et al. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135, 24–35 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rosenthal, P.B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  55. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Google Scholar 

  56. Jossinet, F., Ludwig, T.E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26, 2057–2059 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).

    PubMed  PubMed Central  Google Scholar 

  59. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  61. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38, 27–28 (1996).

    CAS  PubMed  Google Scholar 

  63. Trabuco, L.G., Villa, E., Mitra, K., Frank, J. & Schulten, K. Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mackerell, A.D. Jr., Feig, M. & Brooks, C.L. III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).

    CAS  PubMed  Google Scholar 

  66. MacKerell, A.D. Jr., Banavali, N. & Foloppe, N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 56, 257–265 (2000).

    CAS  PubMed  Google Scholar 

  67. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  68. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Johnson (University of Texas) and A. Newman (Medical Research Council Laboratory of Molecular Biology) for yeast strains; B. Trumpower (Dartmouth Medical School) for providing uL16 antiserum; S. Chen, C. Savva, S. De Carlo, S. Welsch, F. De Haas, M. Vos and K. Sader for technical support with cryo-EM; G. McMullan for help with movie data acquisition; T. Darling and J. Grimmett for help with computing; A. Brown for help with refinement; and S. Scheres for discussion. This work was supported by a Federation of European Biochemical Societies Long Term Fellowship (to F.W.), the Specialist Programme from Bloodwise (12048 to A.J.W.), the UK Medical Research Council (MRC) (MC_U105161083 to A.J.W. and U105115237 to R.R.K.), a Wellcome Trust strategic award to the Cambridge Institute for Medical Research (100140), a core support grant from the Wellcome Trust and MRC to the Wellcome Trust–Medical Research Council Cambridge Stem Cell Institute, the Tesni Parry Trust (to A.J.W.), Ted's Gang (to A.J.W.) and the Cambridge National Institute for Health Research Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

F.W. performed sample preparation, EM data collection, image processing and model refinement. E.G. performed model building and fitting; M.C., L.J. and A.J.W. performed genetic and biochemical experiments; C.H. performed protein expression and purification; C.C.W. generated mutant Dictyostelium strains with advice from D.T. and R.R.K.; and D.T. and F.W. cultured Dictyostelium cells. F.W. and A.J.W. designed experiments and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Alan J Warren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Overview of cryo-EM image-processing procedure.

Maximum likelihood classification scheme and masks used to obtain the complexes of eIF6, SBDS and EFL1 bound to the 60S ribosomal subunit. Insets show the position of the spherical masks (grey) on the 60S subunit (cyan).

Supplementary Figure 2 Resolution of the 60S-ribosomal-subunit complexes and validation of the atomic model.

(a) Gold-standard Fourier shell correlation (FSC) curves for the three 60S ribosome complexes after 3D refinement and statistical movie processing in RELION (Bai, X. C. et al., Elife 2, e00461, 2013; Scheres, S. H. J Struct Biol 180, 519-530, 2012).

(b) Surface (top panel) and cross-sectional (bottom panel) views of the unsharpened final maps colored according to local resolution calculated with the ResMap software package (Kucukelbir, A. et al., Nat Methods, 11, 63-65, 2014).

(c, d, e, f) Examples of densities with the model fitted showing helix 72 of the 26S rRNA from the 60S-eIF6-SBDS complex with the density filtered at 3.3 Å (c), α-helix of the uL6 protein from the 60S-eIF6-SBDS complex with the density filtered at 3.3 Å (d), SBDS from the 60S-eIF6-SBDS complex with the density is filtered at 4 Å (e), EFL1 from the 60S-eIF6-SBDS-EFL1 complex with the density is filtered at 8 Å (f).

(g, h, i) Cross-validation against over-fitting. FSC curves are shown for the 60S-eIF6-SBDS (g), 60S-eIF6-SBDS-EFL1 (h) and 60S-SBDS-EFL1 (i) complexes between the final refined atomic model and the reconstructions from all particles (black); between the model refined in the reconstruction from only half of the particles and the reconstruction from that same half (FSCwork, red); and between that same model and the reconstruction from the other half of the particles (FSCtest, green).

Supplementary Figure 3 Atomic models of the 60S–SBDS–eIF6 complex.

(a) Secondary structure diagram of modeled Dictyostelium 26S rRNA. The diagram was modified from S. cerevisiae 25S rRNA (Comparative RNA Web Site, www.rna.ccbb.utexas.edu). The PTC is shown in bold. Base pairs involved in tertiary interactions are indicated with lines connecting the circles or boxes around the bases involved in the interaction. (-) corresponds to canonical base pairs, while (•, and ) correspond to non-canonical base pairs.

(b, c) Back (b) and front (c) views of the atomic model of the 60S-eIF6-SBDS complex. SRL, sarcin-ricin loop.

Supplementary Figure 4 Molecular environment of eIF6, SBDS and EFL1.

(a, b) Schematic representations of Homo sapiens EF-2 (a) and EFL1 (b).

(c) Ribbon representation of the atomic model of human EFL1 with the subdomain structure highlighted using the same color scheme as (b).

(d-g) Back (d, f) and front (e, g) views of the atomic models of the 60S-eIF6-SBDS-EFL1 and 60S-SBDS-EFL1 complexes, respectively. SRL, sarcin-ricin loop.

Supplementary Figure 5 uL16 is required to recruit Sdo1 to the 60S subunit in vivo.

(a) The EFL1 domain II insertion is dispensable in vivo. Random sporulation assay showing efl1Δ cells transformed with empty vector (pRS316) control or plasmids expressing wild type EFL1 or the EFL1Δ420-580 mutant (left).

(b) Tenfold serial dilutions (left to right) of the indicated yeast cells spotted onto selective –URA medium (left). efl1Δ cells transformed with empty vector (pRS316) are non-viable and are therefore not shown.

(c) S174 and S175 are dispensable for Tif6 function in vivo. Random sporulation assay showing tif6Δ cells transformed with empty vector (pRS316) control or plasmids expressing wild type TIF6 or the indicated TIF6 mutants.

(d) Tenfold serial dilutions (left to right) of the indicated yeast strains spotted onto selective –URA medium (left). tif6Δ cells transformed with empty vector (pRS316) are non-viable and are therefore not shown.

(e) Severe fitness defect of the uL16-H123P allele. Indicated yeast cells with (galactose) or without (glucose) endogenous uL16 spotted in tenfold serial dilutions (left to right) onto solid media.

(f) The uL16-H123P allele markedly reduces uL16 expression. uL16 and uL14 (control) were visualized by immunoblotting of extracts from the indicated strains with (galactose) or without (glucose) endogenous uL16. As controls, uL16 and uL14 were visualized by immunoblotting of extracts from strain C375 (wild type).

(g) The T-ALL associated alleles uL16-H123P, uL16-R98S and uL16-R98C impair Sdo1 binding to the 60S subunit in vivo. Sdo1-FLAG or uL14 were visualized by immunoblotting of supernatant (S) or pellet (P) from cell extracts with (galactose) or without (glucose) endogenous uL16 across the indicated range of NaCl concentrations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weis, F., Giudice, E., Churcher, M. et al. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat Struct Mol Biol 22, 914–919 (2015). https://doi.org/10.1038/nsmb.3112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3112

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer