Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of activity and derepression of alternative lengthening of telomeres

Abstract

Alternative lengthening of telomeres (ALT) involves homology-directed telomere synthesis. This multistep process is facilitated by loss of the ATRX or DAXX chromatin-remodeling factors and by abnormalities of the telomere nucleoprotein architecture, including altered DNA sequence and decreased TRF2 saturation. Induction of telomere-specific DNA damage triggers homology-directed searches, and NuRD-ZNF827 protein-protein interactions provide a platform for the telomeric recruitment of homologous recombination (HR) proteins. Telomere lengthening proceeds by strand exchange and template-driven DNA synthesis, which culminates in dissolution of HR intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four putative steps in the ALT mechanism.
Figure 2: Adjacent and distant copy templates in ALT.
Figure 3: Multiple roles of the NuRD–ZNF827 complex at ALT telomeres.

Similar content being viewed by others

References

  1. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A. & Reddel, R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Heaphy, C.M. et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Reddel, R.R., Bryan, T.M. & Murnane, J.P. Immortalized cells with no detectable telomerase activity: a review. Biochemistry (Mosc.) 62, 1254–1262 (1997).

    CAS  Google Scholar 

  5. Dunham, M.A., Neumann, A.A., Fasching, C.L. & Reddel, R.R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Neumann, A.A. et al. Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev. 27, 18–23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O'Sullivan, R.J. et al. Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1. Nat. Struct. Mol. Biol. 21, 167–174 (2014).Depletion of the histone chaperones ASF1a and ASF1b induces features of ALT in cells with long telomeres, thus supporting the hypothesis that normal telomeric chromatin structure represses ALT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muntoni, A., Neumann, A.A., Hills, M. & Reddel, R.R. Telomere elongation involves intra-molecular DNA replication in cells utilizing alternative lengthening of telomeres. Hum. Mol. Genet. 18, 1017–1027 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. McEachern, M.J. & Haber, J.E. Break-induced replication and recombinational telomere elongation in yeast. Annu. Rev. Biochem. 75, 111–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Natarajan, S. & McEachern, M.J. Recombinational telomere elongation promoted by DNA circles. Mol. Cell. Biol. 22, 4512–4521 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Cesare, A.J. & Reddel, R.R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Wilson, J.S. et al. Localization-dependent and -independent roles of SLX4 in regulating telomeres. Cell Rep. 4, 853–860 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wan, B. et al. SLX4 assembles a telomere maintenance toolkit by bridging multiple endonucleases with telomeres. Cell Rep. 4, 861–869 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharyya, S. et al. Telomerase associated protein 1, HSP90 and topoisomerase IIa associate directly with the BLM helicase in immortalized cells using ALT and modulate its helicase activity using telomeric DNA substrates. J. Biol. Chem. 284, 14966–14977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conomos, D., Reddel, R.R. & Pickett, H.A. NuRD–ZNF827 recruitment to telomeres creates a molecular scaffold for homologous recombination. Nat. Struct. Mol. Biol. 21, 760–770 (2014).At ALT telomeres, nuclear receptors recruit ZNF827 (a zinc-finger protein of previously unknown function), which recruits the NuRD nucleosome-remodeling complex, thus resulting in recruitment of HR proteins and telomere-telomere interactions.

    Article  CAS  PubMed  Google Scholar 

  16. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Flynn, R.L. et al. TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471, 532–536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krejci, L., Altmannova, V., Spirek, M. & Zhao, X. Homologous recombination and its regulation. Nucleic Acids Res. 40, 5795–5818 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maloisel, L., Fabre, F. & Gangloff, S. DNA polymerase δ is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol. Cell. Biol. 28, 1373–1382 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Sharma, S. et al. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res. 40, 682–691 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, W.Q. et al. Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins. J. Cell Biol. 185, 797–810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lydeard, J.R., Jain, S., Yamaguchi, M. & Haber, J.E. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448, 820–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Wyatt, H.D., Sarbajna, S., Matos, J. & West, S.C. Coordinated actions of SLX1–SLX4 and MUS81–EME1 for Holliday junction resolution in human cells. Mol. Cell 52, 234–247 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Sarbajna, S., Davies, D. & West, S.C. Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe. Genes Dev. 28, 1124–1136 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pepe, A. & West, S.C. MUS81–EME2 promotes replication fork restart. Cell Rep. 7, 1048–1055 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Opresko, P.L. et al. Telomere binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem. 277, 41110–41119 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar, J. et al. SLX4 contributes to telomere preservation and regulated processing of telomeric joint molecule intermediates. Nucleic Acids Res. 43, 5912–5923 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dimitrova, N., Chen, Y.C., Spector, D.L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cesare, A.J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16, 1244–1251 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Molenaar, C. et al. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J. 22, 6631–6641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeager, T.R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179 (1999).

    CAS  PubMed  Google Scholar 

  33. Draskovic, I. et al. Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc. Natl. Acad. Sci. USA 106, 15726–15731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fasching, C.L., Neumann, A.A., Muntoni, A., Yeager, T.R. & Reddel, R.R. DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res. 67, 7072–7077 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Cho, N.W., Dilley, R.L., Lampson, M.A. & Greenberg, R.A. Interchromosomal homology searches drive directional ALT telomere movement and synapsis. Cell 159, 108–121 (2014).Telomeric DNA damage results in long-range movement and clustering of telomeres, which is dependent on the Hop2–Mnd1 dimer and Rad51 (proteins that are essential for meiotic synapsis of homologous chromosomes).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao, W. & Sung, P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Res. 43, 4055–4066 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tommerup, H., Dousmanis, A. & de Lange, T. Unusual chromatin in human telomeres. Mol. Cell. Biol. 14, 5777–5785 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Galati, A. et al. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization. Nucleic Acids Res. 43, 5824–5837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Episkopou, H. et al. Alternative lengthening of telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res. 42, 4391–4405 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Déjardin, J. & Kingston, R.E. Purification of proteins associated with specific genomic loci. Cell 136, 175–186 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Michishita, E. et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492–496 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blasco, M.A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. García-Cao, M., O'Sullivan, R., Peters, A.H., Jenuwein, T. & Blasco, M.A. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36, 94–99 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. Heaphy, C.M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425 (2011).Pancreatic neuroendocrine tumors with characteristics of ALT have either mutations of the ATRX or DAXX genes or loss of nuclear expression of their encoded proteins (which are involved in chromatin remodeling at telomeres, among other functions).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lovejoy, C.A. et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS Genet. 8, e1002772 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bower, K. et al. Loss of wild-type ATRX expression in somatic cell hybrids segregates with activation of alternative lengthening of telomeres. PLoS ONE 7, e50062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwartzentruber, J. et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482, 226–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Lee, J.C. et al. Alternative lengthening of telomeres and loss of ATRX are frequent events in pleomorphic and dedifferentiated liposarcomas. Mod. Pathol. 28, 1064–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Napier, C.E. et al. ATRX represses alternative lengthening of telomeres. Oncotarget 6, 16543–16558 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wong, L.H. et al. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 20, 351–360 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Law, M.J. et al. ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner. Cell 143, 367–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Clynes, D. et al. Suppression of the alternative lengthening of telomere pathway by the chromatin remodelling factor ATRX. Nat. Commun. 6, 7538 (2015).

    Article  PubMed  Google Scholar 

  53. Ritchie, K. et al. Loss of ATRX leads to chromosome cohesion and congression defects. J. Cell Biol. 180, 315–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Conomos, D. et al. Variant repeats are interspersed throughout the telomeres and recruit nuclear receptors in ALT cells. J. Cell Biol. 199, 893–906 (2012).ALT telomeres contain an increased content of noncanonical repeats, and one of these (TCAGGG) creates a high-affinity binding site for the nuclear receptors COUP-TF2 and TR4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, M. et al. Telomere extension by telomerase and ALT generates variant repeats by mechanistically distinct processes. Nucleic Acids Res. 42, 1733–1746 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Baird, D.M., Jeffreys, A.J. & Royle, N.J. Mechanisms underlying telomere repeat turnover, revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. EMBO J. 14, 5433–5443 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baird, D.M., Coleman, J., Rosser, Z.H. & Royle, N.J. High levels of sequence polymorphism and linkage disequilibrium at the telomere of 12q: implications for telomere biology and human evolution. Am. J. Hum. Genet. 66, 235–250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Varley, H., Pickett, H.A., Foxon, J.L., Reddel, R.R. & Royle, N.J. Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nat. Genet. 30, 301–305 (2002).

    Article  PubMed  Google Scholar 

  59. Marzec, P. et al. Nuclear-receptor-mediated telomere insertion leads to genome instabiltiy in ALT cancers. Cell 160, 913–927 (2015).In ALT cells, telomeric sequences are inserted into hundreds of locations throughout the genome, thereby potentially contributing to genomic instability and complex karyotypic rearrangements.

    Article  CAS  PubMed  Google Scholar 

  60. Kilburn, A.E., Shea, M.J., Sargent, R.G. & Wilson, J.H. Insertion of a telomere repeat sequence into a mammalian gene causes chromosome instability. Mol. Cell. Biol. 21, 126–135 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sakellariou, D., Chiourea, M., Raftopoulou, C. & Gagos, S. Alternative lengthening of telomeres: recurrent cytogenetic aberrations and chromosome stability under extreme telomere dysfunction. Neoplasia 15, 1301–1313 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Croteau, D.L., Popuri, V., Opresko, P.L. & Bohr, V.A. Human RecQ helicases in DNA repair, recombination, and replication. Annu. Rev. Biochem. 83, 519–552 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sarek, G., Vannier, J.B., Panier, S., Petrini, J.H. & Boulton, S.J. TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol. Cell 57, 622–635 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. León-Ortiz, A.M., Svendsen, J. & Boulton, S.J. Metabolism of DNA secondary structures at the eukaryotic replication fork. DNA Repair (Amst.) 19, 152–162 (2014).

    Article  CAS  Google Scholar 

  66. Denchi, E.L. & de Lange, T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448, 1068–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Flynn, R.L. et al. Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science 347, 273–277 (2015).Inhibition of the protein kinase ATR, a regulator of recombination, inhibits ALT and selectively kills ALT cells, thus raising the possibility that ATR inhibitors may be a useful treatment for ALT cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, T.M. & Cech, T.R. Reversing time: origin of telomerase. Cell 92, 587–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Eickbush, T.H. Telomerase and retrotransposons: which came first? Science 277, 911–912 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. de Lange, T. T-loops and the origin of telomeres. Nat. Rev. Mol. Cell Biol. 5, 323–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Muntoni, A. & Reddel, R.R. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, Spec No. 2, R191–R196 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Biessmann, H. & Mason, J.M. Telomere maintenance without telomerase. Chromosoma 106, 63–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Lundblad, V. & Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues est1 senescence. Cell 73, 347–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. McEachern, M.J. & Blackburn, E.H. Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Lackner, D.H., Raices, M., Maruyama, H., Haggblom, C. & Karlseder, J. Organismal propagation in the absence of a functional telomerase pathway in Caenorhabditis elegans. EMBO J. 31, 2024–2033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cheng, C., Shtessel, L., Brady, M.M. & Ahmed, S. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths. Proc. Natl. Acad. Sci. USA 109, 7805–7810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Riha, K., McKnight, T.D., Griffing, L.R. & Shippen, D.E. Living with genome instability: plant responses to telomere dysfunction. Science 291, 1797–1800 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Niida, H. et al. Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol. Cell. Biol. 20, 4115–4127 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rogan, E.M. et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol. Cell. Biol. 15, 4745–4753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Herrera, E., Martinez, C. & Blasco, M.A. Impaired germinal center reaction in mice with short telomeres. EMBO J. 19, 472–481 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by Cancer Institute New South Wales (NSW) Career Development Fellowship (H.A.P.), Cancer Council NSW Project Grant ID1069550 (H.A.P.) and Program Grant PG11-08 (R.R.R.), and National Health and Medical Research Council of Australia Project Grants ID 1009231 (H.A.P. and R.R.R.), 1034564 (R.R.R.) and 1088646 (R.R.R.). We thank E. Collins for assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hilda A Pickett or Roger R Reddel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pickett, H., Reddel, R. Molecular mechanisms of activity and derepression of alternative lengthening of telomeres. Nat Struct Mol Biol 22, 875–880 (2015). https://doi.org/10.1038/nsmb.3106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3106

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer