Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular basis of telomere dysfunction in human genetic diseases

An Erratum to this article was published on 06 June 2017

This article has been updated

Abstract

Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of telomerase in telomere replication.
Figure 2: Shelterin protein complex.
Figure 3: Human telomerase holoenzyme and telomerase accessory proteins.
Figure 4: Schematic view of telomerase trafficking.

Change history

  • 20 April 2017

    The schematic of the TERT subunit in Figure 1 incorrectly identified the 'Internal RNA template': it now correctly indicates the telomerase RNA. The RNA template sequence has been corrected from AAUCCCAAU to AAUCCCAAUC, and the DNA sequence of the repeat synthesis product added to the 3′ overhang was changed from GGGTTA to GGTTAG.

References

  1. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Moyzis, R.K. et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85, 6622–6626 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wellinger, R.J., Wolf, A.J. & Zakian, V.A. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72, 51–60 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. de Lange, T. How telomeres solve the end-protection problem. Science 326, 948–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Greider, C.W. & Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Shippen-Lentz, D. & Blackburn, E.H. Functional evidence for an RNA template in telomerase. Science 247, 546–552 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Hao, L.Y. et al. Short telomeres, even in the presence of telomerase, limit tissue renewal capacity. Cell 123, 1121–1131 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hiyama, E. & Hiyama, K. Telomere and telomerase in stem cells. Br. J. Cancer 96, 1020–1024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marión, R.M. & Blasco, M.A. Telomeres and telomerase in adult stem cells and pluripotent embryonic stem cells. Adv. Exp. Med. Biol. 695, 118–131 (2010).

    Article  PubMed  Google Scholar 

  12. Flores, I. et al. The longest telomeres: a general signature of adult stem cell compartments. Genes Dev. 22, 654–667 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hultdin, M. et al. Association between telomere length and V(H) gene mutation status in chronic lymphocytic leukaemia: clinical and biological implications. Br. J. Cancer 88, 593–598 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damle, R.N. et al. Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations. Blood 103, 375–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Baumann, P. & Cech, T.R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ye, J.Z. et al. TIN2 binds TRF1 and TRF2 simultaneously and stabilizes the TRF2 complex on telomeres. J. Biol. Chem. 279, 47264–47271 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Celli, G.B. & de Lange, T. DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat. Cell Biol. 7, 712–718 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999). Demonstration by electron microscopy that TRF2 can remodel linear telomeric DNA into large telomeric duplex loops (t loops).

    Article  CAS  PubMed  Google Scholar 

  23. O'Sullivan, R.J. & Karlseder, J. Telomeres: protecting chromosomes against genome instability. Nat. Rev. Mol. Cell Biol. 11, 171–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vannier, J.B., Pavicic-Kaltenbrunner, V., Petalcorin, M.I., Ding, H. & Boulton, S.J. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012). Demonstration that the RTEL1 helicase promotes t-loop disassembly at telomeres and counteracts telomere fragility by unwinding G4-DNA secondary structures.

    Article  CAS  PubMed  Google Scholar 

  25. Vannier, J.B. et al. RTEL1 is a replisome-associated helicase that promotes telomere and genome-wide replication. Science 342, 239–242 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Armanios, M. et al. Haploinsufficiency of telomerase reverse transcriptase leads to anticipation in autosomal dominant dyskeratosis congenita. Proc. Natl. Acad. Sci. USA 102, 15960–15964 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heiss, N.S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Knight, S.W. et al. 1.4 Mb candidate gene region for X linked dyskeratosis congenita defined by combined haplotype and X chromosome inactivation analysis. J. Med. Genet. 35, 993–996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vulliamy, T. et al. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413, 432–435 (2001). Identification of telomerase RNA (hTR) as a gene mutated in dyskeratosis congenita, with an autosomal dominant inheritance pattern.

    Article  CAS  PubMed  Google Scholar 

  30. Vulliamy, T.J. et al. Mutations in the reverse transcriptase component of telomerase (TERT) in patients with bone marrow failure. Blood Cells Mol. Dis. 34, 257–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Yamaguchi, H. et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N. Engl. J. Med. 352, 1413–1424 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Savage, S.A. et al. TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am. J. Hum. Genet. 82, 501–509 (2008). The first demonstration that TINF2 is mutated in a classical dyskeratosis congenita and Revesz syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walne, A.J., Vulliamy, T., Beswick, R., Kirwan, M. & Dokal, I. TINF2 mutations result in very short telomeres: analysis of a large cohort of patients with dyskeratosis congenita and related bone marrow failure syndromes. Blood 112, 3594–3600 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, D., He, Q., Kim, H., Ma, W. & Songyang, Z. TIN2 protein dyskeratosis congenita missense mutants are defective in association with telomerase. J. Biol. Chem. 286, 23022–23030 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Montanaro, L., Tazzari, P.L. & Derenzini, M. Enhanced telomere shortening in transformed lymphoblasts from patients with X linked dyskeratosis. J. Clin. Pathol. 56, 583–586 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dokal, I. Dyskeratosis congenita. Hematology (Am Soc Hematol Educ Program) 2011, 480–486 (2011).

    Article  Google Scholar 

  37. Alter, B.P. et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br. J. Haematol. 150, 179–188 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Alter, B.P., Giri, N., Savage, S.A. & Rosenberg, P.S. Cancer in dyskeratosis congenita. Blood 113, 6549–6557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murnane, J.P. Telomere dysfunction and chromosome instability. Mutat. Res. 730, 28–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Vulliamy, T. et al. Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat. Genet. 36, 447–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kirwan, M. & Dokal, I. Dyskeratosis congenita, stem cells and telomeres. Biochim. Biophys. Acta 1792, 371–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoyeraal, H.M., Lamvik, J. & Moe, P.J. Congenital hypoplastic thrombocytopenia and cerebral malformations in two brothers. Acta Paediatr. Scand. 59, 185–191 (1970).

    Article  CAS  PubMed  Google Scholar 

  43. Hreidarsson, S., Kristjansson, K., Johannesson, G. & Johannsson, J.H. A syndrome of progressive pancytopenia with microcephaly, cerebellar hypoplasia and growth failure. Acta Paediatr. Scand. 77, 773–775 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Revy, P. et al. A syndrome involving intrauterine growth retardation, microcephaly, cerebellar hypoplasia, B lymphocyte deficiency, and progressive pancytopenia. Pediatrics 105, E39 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Touzot, F. et al. Heterogeneous telomere defects in patients with severe forms of dyskeratosis congenita. J. Allergy Clin. Immunol. 129, 473–82, 482 e1–3 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Ballew, B.J. et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum. Genet. 132, 473–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Le Guen, T. et al. Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum. Mol. Genet. 22, 3239–3249 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Ding, H. et al. Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117, 873–886 (2004). Knockout of Rtel1 is embryonically lethal. Rtel1 -null embryonic stem cells display telomere loss, chromosomal breaks and fusions upon differentiation in vivo.

    Article  CAS  PubMed  Google Scholar 

  49. Barber, L.J. et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135, 261–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mitchell, J.R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999). Identification that dyskerin associates with human telomerase RNA. Fibroblasts derived from people with DC show reduced telomerase activity.

    Article  CAS  PubMed  Google Scholar 

  51. Meier, U.T. & Blobel, G. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 127, 1505–1514 (1994).

    Article  CAS  PubMed  Google Scholar 

  52. Mitchell, J.R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marrone, A., Walne, A. & Dokal, I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr. Opin. Genet. Dev. 15, 249–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Trahan, C., Martel, C. & Dragon, F. Effects of dyskeratosis congenita mutations in dyskerin, NHP2 and NOP10 on assembly of H/ACA pre-RNPs. Hum. Mol. Genet. 19, 825–836 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Mochizuki, Y., He, J., Kulkarni, S., Bessler, M. & Mason, P.J. Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc. Natl. Acad. Sci. USA 101, 10756–10761 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grozdanov, P.N., Fernandez-Fuentes, N., Fiser, A. & Meier, U.T. Pathogenic NAP57 mutations decrease ribonucleoprotein assembly in dyskeratosis congenita. Hum. Mol. Genet. 18, 4546–4551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Brault, M.E., Lauzon, C. & Autexier, C. Dyskeratosis congenita mutations in dyskerin SUMOylation consensus sites lead to impaired telomerase RNA accumulation and telomere defects. Hum. Mol. Genet. 22, 3498–3507 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Knight, S.W. et al. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am. J. Hum. Genet. 65, 50–58 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cossu, F. et al. A novel DKC1 mutation, severe combined immunodeficiency (T+B-NK- SCID) and bone marrow transplantation in an infant with Hoyeraal-Hreidarsson syndrome. Br. J. Haematol. 119, 765–768 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Batista, L.F. et al. Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474, 399–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Marrone, A. et al. Telomerase reverse-transcriptase homozygous mutations in autosomal recessive dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Blood 110, 4198–4205 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Weinrich, S.L. et al. Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat. Genet. 17, 498–502 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Canard, B., Chowdhury, K., Sarfati, R., Doublie, S. & Richardson, C.C. The motif D loop of human immunodeficiency virus type 1 reverse transcriptase is critical for nucleoside 5′-triphosphate selectivity. J. Biol. Chem. 274, 35768–35776 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Du, H.Y. et al. Complex inheritance pattern of dyskeratosis congenita in two families with 2 different mutations in the telomerase reverse transcriptase gene. Blood 111, 1128–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Du, H.Y. et al. TERC and TERT gene mutations in patients with bone marrow failure and the significance of telomere length measurements. Blood 113, 309–316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma, A., Myers, K., Ye, Z. & D'Orazio, J. Dyskeratosis congenita caused by a novel TERT point mutation in siblings with pancytopenia and exudative retinopathy. Pediatr. Blood Cancer 61, 2302–2304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peng, Y., Mian, I.S. & Lue, N.F. Analysis of telomerase processivity: mechanistic similarity to HIV-1 reverse transcriptase and role in telomere maintenance. Mol. Cell 7, 1201–1211 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Bachand, F. & Autexier, C. Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions. Mol. Cell. Biol. 21, 1888–1897 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lai, C.K., Mitchell, J.R. & Collins, K. RNA binding domain of telomerase reverse transcriptase. Mol. Cell. Biol. 21, 990–1000 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Banik, S.S. et al. C-terminal regions of the human telomerase catalytic subunit essential for in vivo enzyme activity. Mol. Cell. Biol. 22, 6234–6246 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Middleman, E.J., Choi, J., Venteicher, A.S., Cheung, P. & Artandi, S.E. Regulation of cellular immortalization and steady-state levels of the telomerase reverse transcriptase through its carboxy-terminal domain. Mol. Cell. Biol. 26, 2146–2159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Seimiya, H. et al. Involvement of 14–3-3 proteins in nuclear localization of telomerase. EMBO J. 19, 2652–2661 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhong, F.L. et al. TPP1 OB-fold domain controls telomere maintenance by recruiting telomerase to chromosome ends. Cell 150, 481–494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vulliamy, T.J. et al. Differences in disease severity but similar telomere lengths in genetic subgroups of patients with telomerase and shelterin mutations. PLoS ONE 6, e24383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xin, Z.T. et al. Functional characterization of natural telomerase mutations found in patients with hematologic disorders. Blood 109, 524–532 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. ten Dam, E., van Belkum, A. & Pleij, K. A conserved pseudoknot in telomerase RNA. Nucleic Acids Res. 19, 6951 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Comolli, L.R., Smirnov, I., Xu, L., Blackburn, E.H. & James, T.L. A molecular switch underlies a human telomerase disease. Proc. Natl. Acad. Sci. USA 99, 16998–17003 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, Q., Kim, N.K. & Feigon, J. Architecture of human telomerase RNA. Proc. Natl. Acad. Sci. USA 108, 20325–20332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Theimer, C.A., Finger, L.D., Trantirek, L. & Feigon, J. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc. Natl. Acad. Sci. USA 100, 449–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henras, A. et al. Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J. 17, 7078–7090 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Walne, A.J. et al. Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the telomerase-associated protein NOP10. Hum. Mol. Genet. 16, 1619–1629 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Li, L. & Ye, K. Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443, 302–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Vulliamy, T. et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc. Natl. Acad. Sci. USA 105, 8073–8078 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Venteicher, A.S. et al. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323, 644–648 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cristofari, G. et al. Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol. Cell 27, 882–889 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Sleeman, J.E., Ajuh, P. & Lamond, A.I. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J. Cell Sci. 114, 4407–4419 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Sleeman, J.E. & Lamond, A.I. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 9, 1065–1074 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Zhong, F. et al. Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev. 25, 11–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tycowski, K.T., Shu, M.D., Kukoyi, A. & Steitz, J.A. A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol. Cell 34, 47–57 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhu, Y., Tomlinson, R.L., Lukowiak, A.A., Terns, R.M. & Terns, M.P. Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol. Biol. Cell 15, 81–90 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jády, B.E., Bertrand, E. & Kiss, T. Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J. Cell Biol. 164, 647–652 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chen, Y. et al. Human cells lacking coilin and Cajal bodies are proficient in telomerase assembly, trafficking and telomere maintenance. Nucleic Acids Res. 43, 385–395 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Freund, A. et al. Proteostatic control of telomerase function through TRiC-mediated folding of TCAB1. Cell 159, 1389–1403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nandakumar, J. et al. The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature 492, 285–289 (2012). Identification of the interaction between telomerase and TPP1 through a small patch of amino acids on the surface of TPP1 (TEL patch). This interaction is critical for telomerase function in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sexton, A.N., Youmans, D.T. & Collins, K. Specificity requirements for human telomere protein interaction with telomerase holoenzyme. J. Biol. Chem. 287, 34455–34464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kocak, H. et al. Hoyeraal-Hreidarsson syndrome caused by a germline mutation in the TEL patch of the telomere protein TPP1. Genes Dev. 28, 2090–2102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo, Y. et al. Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 124, 2767–2774 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Frescas, D. & de Lange, T. Binding of TPP1 protein to TIN2 protein is required for POT1a,b protein-mediated telomere protection. J. Biol. Chem. 289, 24180–24187 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Du, H.Y., Mason, P.J., Bessler, M. & Wilson, D.B. TINF2 mutations in children with severe aplastic anemia. Pediatr. Blood Cancer 52, 687 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sasa, G.S., Ribes-Zamora, A., Nelson, N.D. & Bertuch, A.A. Three novel truncating TINF2 mutations causing severe dyskeratosis congenita in early childhood. Clin. Genet. 81, 470–478 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Chen, Y. et al. A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science 319, 1092–1096 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Kim, S.H. et al. Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J. Cell Biol. 181, 447–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ye, J.Z. & de Lange, T. TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat. Genet. 36, 618–623 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Beier, F., Foronda, M., Martinez, P. & Blasco, M.A. Conditional TRF1 knockout in the hematopoietic compartment leads to bone marrow failure and recapitulates clinical features of dyskeratosis congenita. Blood 120, 2990–3000 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Canudas, S. et al. A role for heterochromatin protein 1gamma at human telomeres. Genes Dev. 25, 1807–1819 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Houghtaling, B.R., Canudas, S. & Smith, S. A role for sister telomere cohesion in telomere elongation by telomerase. Cell Cycle 11, 19–25 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bhanot, M. & Smith, S. TIN2 stability is regulated by the E3 ligase Siah2. Mol. Cell. Biol. 32, 376–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wright, W.E., Piatyszek, M.A., Rainey, W.E., Byrd, W. & Shay, J.W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. Giraud-Panis, M.J., Teixeira, M.T., Geli, V. & Gilson, E. CST meets shelterin to keep telomeres in check. Mol. Cell 39, 665–676 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Keller, R.B. et al. CTC1 mutations in a patient with dyskeratosis congenita. Pediatr. Blood Cancer 59, 311–314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Walne, A.J. et al. Mutations in the telomere capping complex in bone marrow failure and related syndromes. Haematologica 98, 334–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Anderson, B.H. et al. Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus. Nat. Genet. 44, 338–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Chen, L.Y., Majerska, J. & Lingner, J. Molecular basis of telomere syndrome caused by CTC1 mutations. Genes Dev. 27, 2099–2108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tummala, H. et al. Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita. J. Clin. Invest. 125, 2151–2160 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Stuart, B.D. et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat. Genet. 47, 512–517 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wu, M. et al. Structural basis of m7GpppG binding to poly(A)-specific ribonuclease. Structure 17, 276–286 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Wu, M. et al. Structural insight into poly(A) binding and catalytic mechanism of human PARN. EMBO J. 24, 4082–4093 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Walne, A.J., Vulliamy, T., Kirwan, M., Plagnol, V. & Dokal, I. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita. Am. J. Hum. Genet. 92, 448–453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ballew, B.J. et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet. 9, e1003695 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Deng, Z. et al. Inherited mutations in the helicase RTEL1 cause telomere dysfunction and Hoyeraal-Hreidarsson syndrome. Proc. Natl. Acad. Sci. USA 110, E3408–E3416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Khincha, P.P. & Savage, S.A. Genomic characterization of the inherited bone marrow failure syndromes. Semin. Hematol. 50, 333–347 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Fedick, A.M. et al. Carrier screening of RTEL1 mutations in the Ashkenazi Jewish population. Clin. Genet. 68, 177–181 (2015).

    Article  CAS  Google Scholar 

  125. Vannier, J.B., Sarek, G. & Boulton, S.J. RTEL1: functions of a disease-associated helicase. Trends Cell Biol. 24, 416–425 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the DNA damage–response laboratory of S.J.B. is funded by The Francis Crick Institute, a European Research Council (ERC) Advanced Investigator Grant (RecMitMei) and a Senior Investigator grant from the Wellcome Trust. S.J.B. is supported as a recipient of a Royal Society Wolfson Research Merit Award. G.S. is funded by an European Molecular Biology Organization (EMBO) Advanced Fellowship. P. Marzec and P. Margalef are funded by EMBO long-term fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J Boulton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarek, G., Marzec, P., Margalef, P. et al. Molecular basis of telomere dysfunction in human genetic diseases. Nat Struct Mol Biol 22, 867–874 (2015). https://doi.org/10.1038/nsmb.3093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing