Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains

Abstract

The bacterial alarmone 5-aminoimidazole-4-carboxamide riboside 5′-triphosphate (AICAR triphosphate or ZTP), derived from the monophosphorylated purine precursor ZMP, accumulates during folate starvation. ZTP regulates genes involved in purine and folate metabolism through a cognate riboswitch. The linker connecting this riboswitch's two subdomains varies in length by over 100 nucleotides. We report the cocrystal structure of the Fusobacterium ulcerans riboswitch bound to ZMP, which spans the two subdomains whose interface also comprises a pseudoknot and ribose zipper. The riboswitch recognizes the carboxamide oxygen of ZMP through an unprecedented inner-sphere coordination with a Mg2+ ion. We show that the affinity of the riboswitch for ZMP is modulated by the linker length. Notably, ZMP can simultaneously bind to the two subdomains even when they are synthesized as separate RNAs. The ZTP riboswitch demonstrates how specific small-molecule binding can drive association of distant noncoding-RNA domains to regulate gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the F. ulcerans ZTP riboswitch.
Figure 2: Critical ligand-RNA and RNA-RNA interactions in the ZTP riboswitch.
Figure 3: Effect of linker length on ZMP binding affinity.
Figure 4: Transcription antitermination by ZTP riboswitch linker variants.
Figure 5: Ligand recognition by purine and purine-like riboswitches.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

References

  1. Hartman, S.C. & Buchanan, J.M. Nucleic acids, purines, pyrimidines (nucleotide synthesis). Annu. Rev. Biochem. 28, 365–410 (1959).

    Article  CAS  PubMed  Google Scholar 

  2. Bochner, B.R. & Ames, B.N. ZTP (5-amino 4-imidazole carboxamide riboside 5′-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell 29, 929–937 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, P.B., Nelson, J.W. & Breaker, R.R. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol. Cell 57, 317–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Peselis, A. & Serganov, A. Themes and variations in riboswitch structure and function. Biochim. Biophys. Acta 1839, 908–918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones, C.P. & Ferré-D'Amaré, A.R. RNA quaternary structure and global symmetry. Trends Biochem. Sci. 40, 211–220 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batey, R.T. Structure and mechanism of purine-binding riboswitches. Q. Rev. Biophys. 45, 345–381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weinberg, Z. et al. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol. 11, R31 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Pleij, C.W., Rietveld, K. & Bosch, L. A new principle of RNA folding based on pseudoknotting. Nucleic Acids Res. 13, 1717–1731 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, J. & Ferré-D'Amaré, A.R. Structure and mechanism of the T-box riboswitches. Wiley Interdiscip. Rev. RNA 6, 419–433 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kompis, I.M., Islam, K. & Then, R.L. DNA and RNA synthesis: antifolates. Chem. Rev. 105, 593–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Keel, A.Y., Rambo, R.P., Batey, R.T. & Kieft, J.S. A general strategy to solve the phase problem in RNA crystallography. Structure 15, 761–772 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ren, A., Rajashankar, K.R. & Patel, D.J. Global RNA fold and molecular recognition for a pfl riboswitch bound to ZMP, a master regulator of one-carbon metabolism. Structure doi:10.1016/j.str.2015.05.016 (25 June 2015).

  13. Trausch, J.J., Marcano-Velazquez, J.G., Matyjasik, M.M. & Batey, R.T. Metal ion-mediated nucleobase recognition by the ZTP riboswitch. Chem. Biol. doi:10.1016/j.chembiol.2015.06.007 (2 July 2015).

  14. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferré-D'Amaré, A.R. & Doudna, J.A. RNA folds: insights from recent crystal structures. Annu. Rev. Biophys. Biomol. Struct. 28, 57–73 (1999).

    Article  PubMed  Google Scholar 

  16. Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Rambo, R.P. & Tainer, J.A. Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16, 638–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, J., Jones, C.P. & Ferré-D'Amaré, A.R. Global analysis of riboswitches by small-angle X-ray scattering and calorimetry. Biochim. Biophys. Acta 1839, 1020–1029 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, J., Lau, M.W. & Ferré-D'Amaré, A.R. Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49, 9123–9131 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Serganov, A. & Patel, D.J. Molecular recognition and function of riboswitches. Curr. Opin. Struct. Biol. 22, 279–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Batey, R.T., Gilbert, S.D. & Montange, R.K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Serganov, A. et al. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11, 1729–1741 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, C.P. & Ferré-D'Amaré, A.R. Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J. 33, 2692–2703 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren, A. & Patel, D.J. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry–related pockets. Nat. Chem. Biol. 10, 780–786 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao, A. & Serganov, A. Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat. Chem. Biol. 10, 787–792 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren, A. et al. Structural basis for molecular discrimination by a 3′,3′-cGAMP sensing riboswitch. Cell Reports 11, 1–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Kulshina, N., Baird, N.J. & Ferré-D'Amaré, A.R. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat. Struct. Mol. Biol. 16, 1212–1217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, K.D. et al. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol. 16, 1218–1223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith, K.D., Shanahan, C.A., Moore, E.L., Simon, A.C. & Strobel, S.A. Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc. Natl. Acad. Sci. USA 108, 7757–7762 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Montange, R.K. & Batey, R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Gilbert, S.D., Rambo, R.P., Van Tyne, D. & Batey, R.T. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat. Struct. Mol. Biol. 15, 177–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Lu, C. et al. Crystal structures of the SAM-III/SMK riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat. Struct. Mol. Biol. 15, 1076–1083 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johnson, J.E. Jr., Reyes, F.E., Polaski, J.T. & Batey, R.T. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492, 133–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Peselis, A. & Serganov, A. Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. Nat. Struct. Mol. Biol. 19, 1182–1184 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Serganov, A., Huang, L. & Patel, D.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458, 233–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Trausch, J.J., Ceres, P., Reyes, F.E. & Batey, R.T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19, 1413–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, L., Ishibe-Murakami, S., Patel, D.J. & Serganov, A. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch. Proc. Natl. Acad. Sci. USA 108, 14801–14806 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein, D.J., Edwards, T.E. & Ferré-D'Amaré, A.R. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat. Struct. Mol. Biol. 16, 343–344 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liberman, J.A., Salim, M., Krucinska, J. & Wedekind, J.E. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat. Chem. Biol. 9, 353–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang, M., Peterson, R. & Feigon, J. Structural insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol. Cell 39, 653–655 (2010).

    Article  CAS  Google Scholar 

  41. Spitale, R.C., Torelli, A.T., Krucinska, J., Bandarian, V. & Wedekind, J.E. The structural basis for recognition of the PreQ0 metabolite by an unusually small riboswitch aptamer domain. J. Biol. Chem. 284, 11012–11016 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R. & Patel, D.J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167–1171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thore, S., Leibundgut, M. & Ban, N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Edwards, T.E. & Ferré-D'Amaré, A.R. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 14, 1459–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Butler, E.B., Xiong, Y., Wang, J. & Strobel, S.A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18, 293–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang, L., Serganov, A. & Patel, D.J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40, 774–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Serganov, A., Huang, L. & Patel, D.J. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455, 1263–1267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garst, A.D., Heroux, A., Rambo, R.P. & Batey, R.T. Crystal structure of the lysine riboswitch regulatory mRNA element. J. Biol. Chem. 283, 22347–22351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baird, N.J. & Ferré-D'Amaré, A.R. Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA 16, 598–609 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mellin, J.R. et al. Riboswitches: sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 345, 940–943 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. DebRoy, S. et al. Riboswitches: a riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345, 937–940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Loh, E. et al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139, 770–779 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Xiao, H., Edwards, T.E. & Ferré-D'Amaré, A.R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, P.B., Nelson, J.W. & Breaker, R.R. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol. Cell 57, 317–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Grosse-Kunstleve, R.W. & Adams, P.D. Substructure search procedures for macromolecular structures. Acta Crystallogr. D Biol. Crystallogr. 59, 1966–1973 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  62. Keating, K.S. & Pyle, A.M. RCrane: semi-automated RNA model building. Acta Crystallogr. D Biol. Crystallogr. 68, 985–995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Baird, N.J. & Ferré-D'Amaré, A.R. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches. RNA 19, 167–176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Keller, S. et al. High-precision isothermal titration calorimetry with automated peak-shape analysis. Anal. Chem. 84, 5066–5073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 78, 1606–1619 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Artsimovitch, I. & Henkin, T.M. In vitro approaches to analysis of transcription termination. Methods 47, 37–43 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at beamlines 5.0.1 and 5.0.2 of the Advanced Light Source at Lawrence Berkeley National Laboratory for crystallographic data collection; R. Trachman for SAXS data collection; G. Piszczek (US National Heart, Lung, and Blood Institute, NHLBI, National Institutes of Health (NIH)) for isothermal titration calorimetry support; and L. Fang, S. Seifert and X. Zuo at beamline 12-ID-C of the Advanced Photon Source, Argonne National Laboratory (ANL) for SAXS support. SAXS data were collected in a core facility of the Center for Cancer Research, US National Cancer Institute (NCI) allocated under agreement between NCI and ANL (PUP-24152). We also thank S. Bachas, M. Chen, C. Fagan, M. Lau, R. Trachman, K. Warner and J. Zhang for discussions. This work was partly conducted at the ALS, on the Berkeley Center for Structural Biology beamlines, which are supported by the NIH. Use of ALS and APS was supported by the US Department of Energy. This work was supported in part by the intramural program of the NHLBI, NIH, and by a Lenfant Biomedical Fellowship to C.P.J.

Author information

Authors and Affiliations

Authors

Contributions

C.P.J. designed and carried out experiments, data analysis, diffraction data collection and structure determination. C.P.J. and A.R.F.-D. prepared the manuscript.

Corresponding author

Correspondence to Adrian R Ferré-D'Amaré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Predicted secondary structures of the ZTP riboswitches.

(a) Halothermothrix orenii, (b) Klebsiella pneumoniae, (c) Paenibacillus sp. HGF5, (d) Spirochaeta thermophila, (e) Thermobispora bispora, (f) Thermosinus carboxydivorans, (g) Thermobacillus composti, and (h) F. ulcerans + 102-nt linker from environmental sample 3278. Secondary structures are based on the F. ulcerans secondary structure as seen in the crystal structure. Additional helices predicted to form at the 5´ end of the RNA are labeled “P0”, and the insertion domain helix of T. bispora is labeled “P5”.

Supplementary Figure 2 Crystallization of F. ulcerans ZTP riboswitch.

(a) Image of ZTP riboswitch crystals growing from a polyethylene glycol precipitate, as described in methods. Bar denotes 100 μm. (b) Denaturing polyacrylamide gel of a single riboswitch crystal. Lanes 1–3: riboswitch RNA control: 2.5, 1.25, and 0.625 μg purified RNA. Lanes 4–6: sequential crystal wash solutions. Lane 7: riboswitch crystal. (c) Density-modified 2|Fo|-|Fc| SAD map (blue mesh) used for initial model building, contoured at 2 σ.

Supplementary Figure 3 Conservation of ZTP riboswitch and mapping onto the F. ulcerans riboswitch.

(a) Conservation/covariation data published by Breaker and coworkers (Kim, P. B. et al, Mol Cell, 57, 317-28, 2015) mapped onto the sequence and secondary structure of the F. ulcerans riboswitch. Red nucleotides are more than 97% conserved, blue nucleotides are more than 90% conserved, and gray nucleotides are more than 75% conserved. (b) Cartoon view of the same conservation data mapped onto the crystallographic model. Coloring is the same as in A, except black residues (not conserved) are shown in white.

Supplementary Figure 4 Small-angle X-ray scattering (SAXS) analysis of ZTP riboswitches.

(a) Size-exclusion chromatography traces for the F. ulcerans, H. orenii, and T. carboxydivorans pfl RNAs. (b) Denaturing and native polyacrylamide gels of pooled and concentrated monomer fractions, visualized by staining with ethidium bromide. Lane 1: H. orenii. Lane 2: F. ulcerans. Lane 3: T. carboxydivorans. (c) SAXS data for the F. ulcerans, H. orenii, and T. carboxydivorans RNAs in the presence (red) and absence (black) of ZMP. Arrow indicates the presence of aggregation in the T. carboxydivorans samples without ZMP. (d) Kratky plot for the F. ulcerans riboswitch in the presence (black) and absence (red) of ZMP. (e) Cartoon view of the crystal contact interface formed between two RNA dimers (left) and overall view of the tetramer in the crystal (right). (f) Normalized size-exclusion chromatography traces of purified monomeric (left) and dimeric (right) fractions of the F. ulcerans riboswitch prior to isothermal titration calorimetry (ITC) measurements (black) and after ITC measurements (red).

Supplementary Figure 5 Representative isothermal calorimetry titration experiments and single-round transcription experiments of F. ulcerans ZTP riboswitch linker variant RNAs.

(a) 20 μM wild-type ZTP riboswitch titrated with 200 μM ZMP. (b) 50 μM +10 A linker variant titrated with 1 mM ZMP. (c) 50 μM +20 A linker variant titrated with 1 mM ZMP. (d) 50 μM +env3278 linker variant titrated with 1 mM ZMP. (e) 40 μM ZTP riboswitch lacking the pseudoknot (Δ55-75) with 40 μM 59–75 added in trans titrated with 800 μM ZMP. (f) 40 μM ZTP riboswitch Δ55-75 titrated with 800 μM ZMP. (g) Representative transcription termination experiment of F. ulcerans ZTP riboswitch linker variants. Lanes 1–3: wild-type template in the presence of 0, 100, and 1000 μM ZMP. Lanes 4–6: +10A linker template in the presence of 0, 100, and 1000 μM ZMP. Lanes 7–9: +20A linker template in the presence of 0, 100, and 1000 μM ZMP. Lanes 10–12: +env3268 linker template in the presence of 0, 100, and 1000 μM ZMP. Bands corresponding to full-length (F) and terminated (T) transcription products are indicated.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C., Ferré-D'Amaré, A. Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains. Nat Struct Mol Biol 22, 679–685 (2015). https://doi.org/10.1038/nsmb.3073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing