Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

MCM2 binding to histones H3–H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork

MCM2, a component of the replicative helicase, can bind histones H3–H4 in both tetrameric and dimeric form, depending on the presence of the histone chaperone ASF1. A structural analysis of the complexes now sheds light on key domains in the MCM2 protein that prove important for cell proliferation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamics of histones at the replication fork.
Figure 2: MCM2 binding to both histones H3–H4 and ASF1 supports a tetramer-to-dimer model in the recycling of parental H3–H4 at the replication fork.

Accession codes

Accessions

Protein Data Bank

References

  1. Probst, A.V., Dunleavy, E. & Almouzni, G. Nat. Rev. Mol. Cell Biol. 10, 192–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, H. et al. Nat. Struct. Mol. Biol. 22, 618–626 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Richet, N. et al. Nucleic Acids Res. 43, 1905–1917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mousson, F. et al. Proc. Natl. Acad. Sci. USA 102, 5975–5980 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. English, C.M. et al. Cell 127, 495–508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Natsume, R. et al. Nature 446, 338–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Ishimi, Y. et al. J. Biol. Chem. 271, 24115–24122 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Groth, A. et al. Mol. Cell 17, 301–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Groth, A. et al. Science 318, 1928–1931 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Loyola, A. et al. Mol. Cell 24, 309–316 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Jasencakova, Z. et al. Mol. Cell 37, 736–743 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, M. et al. Science 328, 94–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Tang, Y. et al. Nat. Struct. Mol. Biol. 13, 921–929 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abascal, F. et al. Mol. Biol. Evol. 30, 1853–1866 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Ricketts, D.M. et al. Nat. Commun. 6, 7711 (2015).

    Article  PubMed  Google Scholar 

  16. Quivy, J.P., Grandi, P. & Almouzni, G. EMBO J. 20, 2015–2027 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shibahara, K. & Stillman, B. Cell 96, 575–585 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gérard, A. et al. EMBO Rep. 7, 817–823 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Cook, A.J. et al. Mol. Cell 44, 918–927 (2011).

    CAS  PubMed  Google Scholar 

  20. Lacoste, N. et al. Mol. Cell 53, 631–644 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Arimura, Y. et al. Sci. Rep. 4, 7115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nakano, S., Stillman, B. & Horvitz, H.R. Cell 147, 1525–1536 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, S. et al. Genes Dev. 29, 1326–1340 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corpet, A. & Almouzni, G. Trends Cell Biol. 19, 29–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Luger, K. et al. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clément, C., Almouzni, G. MCM2 binding to histones H3–H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat Struct Mol Biol 22, 587–589 (2015). https://doi.org/10.1038/nsmb.3067

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing