Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Grab the wiggly tail: new insights into the dynamics of circadian clocks

How do molecular interactions determine the period length of a circadian oscillator? In mammals, a disordered region of the BMAL1 transcription factor that is able to interact with activators or repressors seems to perform this function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Model of the mammalian circadian oscillator.
Figure 2: Analysis of the differences between BMAL1 and BMAL2.

Marina Corral Spence/Nature Publishing Group

Figure 3: Properties of disordered proteins may explain differences in the function of BMAL1 and BMAL2.

Marina Corral Spence/Nature Publishing Group

References

  1. 1

    Dunlap, J.C. Cell 96, 271–290 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Xu, H. et al. Nat. Struct. Mol. Biol. 22, 476–484 (2015).

    CAS  Article  Google Scholar 

  3. 3

    Crane, B.R. & Young, M.W. Annu. Rev. Biochem. 83, 191–219 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Okano, T., Sasaki, M. & Fukada, Y. Neurosci. Lett. 300, 111–114 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Shearman, L.P. et al. Science 288, 1013–1019 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Chaves, I. et al. Annu. Rev. Plant Biol. 62, 335–364 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Huang, N. et al. Science 337, 189–194 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Schmalen, I. et al. Cell 157, 1203–1215 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Ye, R. et al. Genes Dev. 28, 1989–1998 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Hirota, T. et al. Science 337, 1094–1097 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Kim, J.K. & Forger, D.B. Mol. Syst. Biol. 8, 630 (2012).

    Article  Google Scholar 

  12. 12

    Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S. & Reppert, S.M. Cell 107, 855–867 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Stratmann, M., Stadler, F., Tamanini, F., van der Horst, G.T. & Ripperger, J.A. Genes Dev. 24, 1317–1328 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Wells, M. et al. Proc. Natl. Acad. Sci. USA 105, 5762–5767 (2008).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jürgen A Ripperger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hui, K., Ripperger, J. Grab the wiggly tail: new insights into the dynamics of circadian clocks. Nat Struct Mol Biol 22, 435–436 (2015). https://doi.org/10.1038/nsmb.3039

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing