Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Grab the wiggly tail: new insights into the dynamics of circadian clocks

How do molecular interactions determine the period length of a circadian oscillator? In mammals, a disordered region of the BMAL1 transcription factor that is able to interact with activators or repressors seems to perform this function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the mammalian circadian oscillator.
Figure 2: Analysis of the differences between BMAL1 and BMAL2.

Marina Corral Spence/Nature Publishing Group

Figure 3: Properties of disordered proteins may explain differences in the function of BMAL1 and BMAL2.

Marina Corral Spence/Nature Publishing Group


  1. Dunlap, J.C. Cell 96, 271–290 (1999).

    Article  CAS  Google Scholar 

  2. Xu, H. et al. Nat. Struct. Mol. Biol. 22, 476–484 (2015).

    Article  CAS  Google Scholar 

  3. Crane, B.R. & Young, M.W. Annu. Rev. Biochem. 83, 191–219 (2014).

    Article  CAS  Google Scholar 

  4. Okano, T., Sasaki, M. & Fukada, Y. Neurosci. Lett. 300, 111–114 (2001).

    Article  CAS  Google Scholar 

  5. Shearman, L.P. et al. Science 288, 1013–1019 (2000).

    Article  CAS  Google Scholar 

  6. Chaves, I. et al. Annu. Rev. Plant Biol. 62, 335–364 (2011).

    Article  CAS  Google Scholar 

  7. Huang, N. et al. Science 337, 189–194 (2012).

    Article  CAS  Google Scholar 

  8. Schmalen, I. et al. Cell 157, 1203–1215 (2014).

    Article  CAS  Google Scholar 

  9. Ye, R. et al. Genes Dev. 28, 1989–1998 (2014).

    Article  CAS  Google Scholar 

  10. Hirota, T. et al. Science 337, 1094–1097 (2012).

    Article  CAS  Google Scholar 

  11. Kim, J.K. & Forger, D.B. Mol. Syst. Biol. 8, 630 (2012).

    Article  Google Scholar 

  12. Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S. & Reppert, S.M. Cell 107, 855–867 (2001).

    Article  CAS  Google Scholar 

  13. Stratmann, M., Stadler, F., Tamanini, F., van der Horst, G.T. & Ripperger, J.A. Genes Dev. 24, 1317–1328 (2010).

    Article  CAS  Google Scholar 

  14. Wells, M. et al. Proc. Natl. Acad. Sci. USA 105, 5762–5767 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jürgen A Ripperger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, K., Ripperger, J. Grab the wiggly tail: new insights into the dynamics of circadian clocks. Nat Struct Mol Biol 22, 435–436 (2015).

Download citation

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing