Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation

Abstract

The AAA+ ATPase Vps4 disassembles ESCRT-III and is essential for HIV-1 budding and other pathways. Vps4 is a paradigmatic member of a class of hexameric AAA+ ATPases that disassemble protein complexes without degradation. To distinguish between local displacement versus global unfolding mechanisms for complex disassembly, we carried out hydrogen/deuterium exchange during Saccharomyces cerevisiae Vps4 disassembly of a chimeric Vps24-2 ESCRT-III filament. EX1 exchange behavior shows that Vps4 completely unfolds ESCRT-III substrates on a time scale consistent with the disassembly reaction. The established unfoldase ClpX showed the same pattern, thus demonstrating a common unfolding mechanism. Vps4 hexamers containing a single cysteine residue in the pore loops were cross-linked to ESCRT-III subunits containing unique cysteines within the folded core domain. These data support a mechanism in which Vps4 disassembles its substrates by completely unfolding them and threading them through the central pore.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dynamics of a model ESCRT-III substrate of Vps4.
Figure 2: Vps4 completely unfolds ESCRT-III substrate in the course of disassembly.
Figure 3: Vps4 unfolds the Vps24-2 part of MBP–Vps24-2–ssrA as efficiently as ClpX.
Figure 4: Unfolding of MBP–Vps24-2–ssrA by ClpX and Vps4.
Figure 5: Pore-loop residues are required for disassembly.
Figure 6: ATP-dependent cross-linking of Vps24-2 to the central pore.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Votteler, J. & Sundquist, W.I. Virus budding and the ESCRT pathway. Cell Host Microbe 14, 232–241 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Hanson, P.I. & Cashikar, A. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 28, 337–362 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Guizetti, J. et al. Cortical constriction during abscission involves helices of ESCRT-III-dependent filaments. Science 331, 1616–1620 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Agromayor, M. & Martin-Serrano, J. Knowing when to cut and run: mechanisms that control cytokinetic abscission. Trends Cell Biol. 23, 433–441 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Choudhuri, K. et al. Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507, 118–123 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Jimenez, A.J. et al. ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014).

    Article  Google Scholar 

  7. 7

    Shields, S.B. & Piper, R.C. How ubiquitin functions with ESCRTs. Traffic 12, 1306–1317 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J.H. Membrane scission by the ESCRT-III complex. Nature 458, 172–177 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Lata, S. et al. Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354–1357 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Hill, C.P. & Babst, M. Structure and function of the membrane deformation AAA ATPase Vps4. Biochim. Biophys. Acta 1823, 172–181 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Babst, M., Wendland, B., Estepa, E.J. & Emr, S.D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    CAS  Article  Google Scholar 

  12. 12

    Muzioł, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006).

    Article  Google Scholar 

  13. 13

    Bajorek, M. et al. Structural basis for ESCRT-III protein autoinhibition. Nat. Struct. Mol. Biol. 16, 754–762 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Xiao, J. et al. Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis. Mol. Biol. Cell 20, 3514–3524 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl. Acad. Sci. USA 103, 19140–19145 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Shim, S., Kimpler, L.A. & Hanson, P.I. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068–1079 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Lata, S. et al. Structural basis for autoinhibition of ESCRT-III CHMP3. J. Mol. Biol. 378, 818–827 (2008).

    Article  Google Scholar 

  18. 18

    Ghazi-Tabatabai, S. et al. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16, 1345–1356 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Hanson, P.I., Roth, R., Lin, Y. & Heuser, J.E. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J. Cell Biol. 180, 389–402 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Henne, W.M., Buchkovich, N.J., Zhao, Y. & Emr, S.D. The endosomal sorting complex ESCRT-II mediates the assembly and architecture of ESCRT-III helices. Cell 151, 356–371 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Cashikar, A.G. et al. Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife 3, e02184 (2014).

    Article  Google Scholar 

  22. 22

    Shen, Q.T. et al. Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J. Cell Biol. 206, 763–777 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Obita, T. et al. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735–739 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Stuchell-Brereton, M.D. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Hurley, J.H. & Yang, D. MIT domainia. Dev. Cell 14, 6–8 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Kieffer, C. et al. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding. Dev. Cell 15, 62–73 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Monroe, N. et al. The oligomeric state of the active Vps4 AAA ATPase. J. Mol. Biol. 426, 510–525 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Xiao, J., Xia, H., Yoshino-Koh, K., Zhou, J. & Xu, Z. Structural characterization of the ATPase reaction cycle of endosomal AAA protein Vps4. J. Mol. Biol. 374, 655–670 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Hartmann, C. et al. Vacuolar protein sorting: two different functional states of the AAA-ATPase Vps4p. J. Mol. Biol. 377, 352–363 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Gonciarz, M.D. et al. Biochemical and structural studies of yeast Vps4 oligomerization. J. Mol. Biol. 384, 878–895 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Yu, Z., Gonciarz, M.D., Sundquist, W.I., Hill, C.P. & Jensen, G.J. Cryo-EM structure of dodecameric Vps4p and its 2:1 complex with Vta1p. J. Mol. Biol. 377, 364–377 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Landsberg, M.J., Vajjhala, P.R., Rothnagel, R., Munn, A.L. & Hankamer, B. Three-dimensional structure of AAA ATPase Vps4: advancing structural insights into the mechanisms of endosomal sorting and enveloped virus budding. Structure 17, 427–437 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Davies, B.A. et al. Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly. Mol. Biol. Cell 21, 3396–3408 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Baker, T.A. & Sauer, R.T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta 1823, 15–28 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Abdelhakim, A.H., Sauer, R.T. & Baker, T.A. The AAA plus ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Proc. Natl. Acad. Sci. USA 107, 2437–2442 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Zhao, M. et al. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Wales, T.E. & Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Weis, D.D., Wales, T.E., Engen, J.R., Hotchko, M. & Ten Eyck, L.F. Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J. Am. Soc. Mass Spectrom. 17, 1498–1509 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Martin, A., Baker, T.A. & Sauer, R.T. Pore loops of the AAA plus ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Martin, A., Baker, T.A. & Sauer, R.T. Diverse pore loops of the AAA plus ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol. Cell 29, 441–450 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Barkow, S.R., Levchenko, I., Baker, T.A. & Sauer, R.T. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 16, 605–612 (2009).

    CAS  Article  Google Scholar 

  45. 45

    Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    CAS  Article  Google Scholar 

  46. 46

    Maillard, R.A. et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145, 459–469 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Gottesman, S., Roche, E., Zhou, Y.N. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    CAS  Article  Google Scholar 

  48. 48

    Spurlino, J.C., Lu, G.Y. & Quiocho, F.A. Refined 1.8-Å structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. Biochemistry 32, 10553–10559 (1993).

    Article  Google Scholar 

  49. 49

    Azmi, I.F. et al. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1. Dev. Cell 14, 50–61 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Babst, M., Sato, T.K., Banta, L.M. & Emr, S.D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997).

    CAS  Article  Google Scholar 

  51. 51

    Frickey, T. & Lupas, A.N. Phylogenetic analysis of AAA proteins. J. Struct. Biol. 146, 2–10 (2004).

    CAS  Article  Google Scholar 

  52. 52

    Roll-Mecak, A. & Vale, R.D. Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature 451, 363–367 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Sharma, S., Hoskins, J.R. & Wickner, S. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP. J. Biol. Chem. 280, 5449–5455 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Nyquist (University of California, Berkeley) for samples of Escherichia coli ClpX and ClpP. This work was supported by grants R01AI112442 (J.H.H.) and R01GM094497 (A.M.) from the US National Institutes of Health.

Author information

Affiliations

Authors

Contributions

B.Y. conceived the project, created reagents, acquired data, analyzed data and wrote the manuscript; G.S. analyzed data; Q.S. acquired data; A.M. conceived the project and wrote the manuscript; J.H.H. conceived the project, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to James H Hurley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Vps24-2 filaments.

(a) Electron micrograph of negatively stained filaments of Vps24-2. Scale bar = 50 nm. (b) Sedimentation of Vps24-2 and MBP-Vps24-2-ssrA. Vps24-2 and MBP-Vps24-2-ssrA were concentrated to above 200 μM and incubated at 4 oC overnight before dilution to 5 μM and ultracentrifugation. The resulting pellet (P) and supernatant (S) fractions were analyzed by SDS-PAGE.

Supplementary Figure 2 Peptide coverage of Vps24-2 and MBP–Vps24-2–ssrA.

Sequence coverage map for (a) Vps24-2 and (b) MBP-Vps24-2-ssrA. Solid green lines above the protein sequence denote the pepsin digest fragments identified in the study. The two residues mutated to cysteine for crosslinking experiments are labeled with asterisks.

Supplementary Figure 3 Filamentous Vps24-2 has a stable core.

(a) Total deuteron incorporation into undigested Vps24-2 monomers (triangles) and filaments (squares) over time. (b) Deuteron incorporation over time for the Vps24-2 part of MBP-Vps24-2-ssrA, mapped onto the Vps24-2 structural model. (c) and (d) Deuteron incorporation at 5 sec, 20 sec, 2min and 5 min for Vps24-2 monomers (c) and Vps24-2 filaments (d), mapped onto the Vps24-2 structural model. The color-coding for different percentages of deuteron incorporation is the same as in Fig. 2b.

Supplementary Figure 4 Vps4-dependent EX1 exchange in helices α1, α2 and α3.

(a), (c) and (e) Mass spectra of the indicated peptides from helices α1, α2, and α3 of Vps24-2 monomers (left), filaments (middle) or filaments plus Vps4 (right). Controls and time points are indicated. Arrows above the spectra indicate regions of the spectrum representing EX2 and EX1 behavior. (b), (d) and (f) Peak-width analysis of the selected peptides at 5, 10, 20, 30, 40 and 60 sec. Open circles, Vps24-2 monomers; filled squares, Vps24-2 filaments; filled triangles, Vps24-2 filaments plus Vps4. The grey bar denotes the 2 Da peak-width change allowance for peptides undergoing EX2 kinetics 41. Each peptide is color coded as in Fig. 2a.

Supplementary Figure 5 ClpX- and Vps4-dependent EX1 exchange in MBP.

(a-d) Mass spectra of four additional peptides from the MBP portion of MBP-Vps24-2-ssrA prior to incubation in D2O (top row), alone (second row), and in the presence of ClpX (third row) or Vps4 (fourth row), or after unfolding in 6 M GdnHCl followed by complete deuteration (bottom row). Each peptide is color coded as in Fig. 4a.

Supplementary Figure 6 ATPase activity of Vps4 constructs.

(a) SDS-PAGE gel of Vps4CF-mediated disassembly of Vps24-2 filament. (b) Bar graph showing the ATPase activity of Vps4 constructs in the absence or presence of substrate Vps24-2. (c) Structural model of Vps24 with position of I92C and M136C mutation highlighted in yellow.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 6427 kb)

Supplementary Data Set 1

Uncropped gels and western blot (PDF 35772 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Stjepanovic, G., Shen, Q. et al. Vps4 disassembles an ESCRT-III filament by global unfolding and processive translocation. Nat Struct Mol Biol 22, 492–498 (2015). https://doi.org/10.1038/nsmb.3015

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing