Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structure of a Yeast 40S–eIF1–eIF1A–eIF3–eIF3j initiation complex

Abstract

Eukaryotic translation initiation requires cooperative assembly of a large protein complex at the 40S ribosomal subunit. We have resolved a budding yeast initiation complex by cryo-EM, allowing placement of prior structures of eIF1, eIF1A, eIF3a, eIF3b and eIF3c. Our structure highlights differences in initiation-complex binding to the ribosome compared to that of mammalian eIF3, demonstrates a direct contact between eIF3j and eIF1A and reveals the network of interactions between eIF3 subunits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryo-EM structure of the budding yeast eIF1–eIF1A–eIF3–eIF3j initiation complex bound to the 40S.
Figure 2: Comparison between the ribosomal binding sites of budding yeast eIF3–eIF1–eIF1A and mammalian eIF3–DHX29.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Hinnebusch, A.G. & Lorsch, J.R. Cold Spring Harb. Perspect. Biol. 4, a011544 (2012).

    Article  Google Scholar 

  2. Jivotovskaya, A.V., Valasek, L., Hinnebusch, A.G. & Nielsen, K.H. Mol. Cell. Biol. 26, 1355–1372 (2006).

    Article  CAS  Google Scholar 

  3. Sun, C. et al. Proc. Natl. Acad. Sci. USA 108, 20473–20478 (2011).

    Article  CAS  Google Scholar 

  4. Zhou, M. et al. Proc. Natl. Acad. Sci. USA 105, 18139–18144 (2008).

    Article  CAS  Google Scholar 

  5. Hashem, Y. et al. Cell 153, 1108–1119 (2013).

    Article  CAS  Google Scholar 

  6. Hussain, T. et al. Cell 159, 597–607 (2014).

    Article  CAS  Google Scholar 

  7. Erzberger, J.P. et al. Cell 158, 1123–1135 (2014).

    Article  CAS  Google Scholar 

  8. Sokabe, M., Fraser, C.S. & Hershey, J.W. Nucleic Acids Res. 40, 905–913 (2012).

    Article  CAS  Google Scholar 

  9. Sokabe, M. & Fraser, C.S. J. Biol. Chem. 289, 31827–31836 (2014).

    Article  CAS  Google Scholar 

  10. Weisser, M., Voigts-Hoffmann, F., Rabl, J., Leibundgut, M. & Ban, N. Nat. Struct. Mol. Biol. 20, 1015–1017 (2013).

    Article  CAS  Google Scholar 

  11. Lomakin, I.B. & Steitz, T.A. Nature 500, 307–311 (2013).

    Article  CAS  Google Scholar 

  12. Querol-Audi, J. et al. Structure 21, 920–928 (2013).

    Article  CAS  Google Scholar 

  13. Pisarev, A.V. et al. EMBO J. 27, 1609–1621 (2008).

    Article  CAS  Google Scholar 

  14. Kouba, T. et al. PLoS ONE 7, e40464 (2012).

    Article  CAS  Google Scholar 

  15. Munzarová, V. et al. PLoS Genet. 7, e1002137 (2011).

    Article  Google Scholar 

  16. Szamecz, B. et al. Genes Dev. 22, 2414–2425 (2008).

    Article  CAS  Google Scholar 

  17. Roy, B. et al. RNA 16, 748–761 (2010).

    Article  CAS  Google Scholar 

  18. Chiu, W.L. et al. Mol. Cell. Biol. 30, 4415–4434 (2010).

    Article  CAS  Google Scholar 

  19. Phan, L., Schoenfeld, L.W., Valásek, L., Nielsen, K.H. & Hinnebusch, A.G. EMBO J. 20, 2954–2965 (2001).

    Article  CAS  Google Scholar 

  20. Dong, Z., Qi, J., Peng, H., Liu, J. & Zhang, J.T. J. Biol. Chem. 288, 27951–27959 (2013).

    Article  CAS  Google Scholar 

  21. Liu, Y. et al. Structure 22, 923–930 (2014).

    Article  CAS  Google Scholar 

  22. Cuchalová, L. et al. Mol. Cell. Biol. 30, 4671–4686 (2010).

    Article  Google Scholar 

  23. Herrmannová, A. et al. Nucleic Acids Res. 40, 2294–2311 (2012).

    Article  Google Scholar 

  24. Khoshnevis, S., Neumann, P. & Ficner, R. PLoS ONE 5, e12784 (2010).

    Article  Google Scholar 

  25. Elantak, L. et al. J. Mol. Biol. 396, 1097–1116 (2010).

    Article  CAS  Google Scholar 

  26. Fraser, C.S., Berry, K.E., Hershey, J.W. & Doudna, J.A. Mol. Cell 26, 811–819 (2007).

    Article  CAS  Google Scholar 

  27. Nielsen, K.H. et al. Mol. Cell. Biol. 26, 2984–2998 (2006).

    Article  CAS  Google Scholar 

  28. Valásek, L. et al. EMBO J. 20, 891–904 (2001).

    Article  Google Scholar 

  29. Valásek, L., Hasek, J., Trachsel, H., Imre, E.M. & Ruis, H. J. Biol. Chem. 274, 27567–27572 (1999).

    Article  Google Scholar 

  30. Valásek, L., Nielsen, K.H., Zhang, F., Fekete, C.A. & Hinnebusch, A.G. Mol. Cell. Biol. 24, 9437–9455 (2004).

    Article  Google Scholar 

  31. Pettersen, E.F. et al. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  32. Rabl, J., Leibundgut, M., Ataide, S.F., Haag, A. & Ban, N. Science 331, 730–736 (2011).

    Article  CAS  Google Scholar 

  33. Cabrita, L.D., Dai, W. & Bottomley, S.P. BMC Biotechnol. 6, 12 (2006).

    Article  Google Scholar 

  34. Leitner, A. et al. Mol. Cell. Proteomics 9, 1634–1649 (2010).

    Article  CAS  Google Scholar 

  35. Li, X. et al. Nat. Methods 10, 584–590 (2013).

    Article  CAS  Google Scholar 

  36. Ludtke, S.J., Baldwin, P.R. & Chiu, W. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  37. Scheres, S.H.W. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  Google Scholar 

  38. Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Nat. Methods 11, 63–65 (2014).

    Article  CAS  Google Scholar 

  39. Ben-Shem, A. et al. Science 334, 1524–1529 (2011).

    Article  CAS  Google Scholar 

  40. Kelley, L.A. & Sternberg, M.J.E. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the ETH Zürich Scientific Center for Optical and Electron Microscopy for access to EM equipment and are indebted to P. Tittmann for technical support. C.H.S.A. was supported by an ETH Zürich postdoctoral fellowship and an European Molecular Biology Organization (EMBO) long-term fellowship and J.P.E. by an EMBO long-term fellowship. This work was supported by the Swiss National Science Foundation (SNSF), the National Center of Excellence in Research (of Switzerland), the Structural Biology, and RNA and Disease programs of the SNSF and European Research Council grant 250071 (to N.B.) under the European Community's Seventh Framework Programme.

Author information

Authors and Affiliations

Authors

Contributions

N.B. and C.H.S.A. designed the study. C.H.S.A., J.P.E. and T.S. prepared samples and performed biochemical experiments. C.H.S.A. and D.B. collected electron micrographs and calculated reconstructions. C.H.S.A., D.B., J.P.E. and N.B. interpreted the structures and wrote the manuscript.

Corresponding author

Correspondence to Nenad Ban.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Local and global resolution statistics for the 40S–eIF1–eIF1A–eIF3–eIF3j complex.

Fourier shell correlation for 40S–eIF1–eIF1A–eIF3–eIF3j calculated between two independently refined half sets; resolution cut-off indicated by the red line (left panel). The “gold-standard” Fourier shell correlation was determined, and resolution estimated, according to the method of S. Scheres37. The surface of the 40S–eIF1–eIF1A–eIF3–eIF3j reconstruction low-pass filtered at global resolution (6.47 Å) is shown coloured according to the local resolution (centre and right panels – 5 Å shown in blue through to 15 Å shown in red). The mean local resolution was 12.9 Å for eIF3ac, 9.5 Å for eIF3a CTD, 10.3 Å for eIF3b WD40, 14.7 Å for eIF3gi, 14.0 Å for eIF3b RRM and 10.8 Å for eIF1–1a–3j. Local resolution was determined using the implementation of Kucukelbir and colleagues: ResMap38.

Supplementary Figure 2 Overview comparing the rabbit 43S preinitiation complex, budding-yeast eIF3–eIF1–eIF1A complex and partial yeast 48S initiation complex.

Cryo-EM structures of (left) the rabbit 43S5, (centre) the budding yeast eIF3–eIF1–eIF1A initiation complex and (right) the partial yeast 48S6 are shown with accompanying fitted or directly interpreted structures. A composite between the modelled PCI-MPN core7, the deposited structure of the partial yeast 48S and our eIF3b fit is shown docked into the 43S (for which only a fit of the PCI-MPN core is currently available) to facilitate comparison. Each structure is shown from the interface (top) and solvent (bottom) sides; RNA is shown in grey, ribosomal proteins in yellow, the ternary complex (TC) in black, eIF1 in red, eIF1A in orange, eIF3a in blue, 3b in green, 3c in purple, 3e in dark green, 3f in turquoise, 3h in deep orange, 3k in spring green, 3l in light yellow and 3m in pink. The trace of the C-terminal tail of eIF3a is shown by a blue dotted line in, while difference density assigned to eIF3j is shown in magenta.

Supplementary Figure 3 Cryo-EM classification schema for the 40S–eIF1–eIF1A–eIF3–eIF3j complex.

The three-dimensional reconstructions from each round of classification are shown from the solvent exposed surface of the 40S subunit. The number of particles involved in each classification, and the flow of particles between stages of classification are shown. The last steps of classification involved the occupied particles from both datasets and several different parameter sets were trialed in order to minimize the presence of unoccupied, or lower resolution, particles. Magenta boxes indicate classes from which particles were retained earlier in classification.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Note (PDF 4289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aylett, C., Boehringer, D., Erzberger, J. et al. Structure of a Yeast 40S–eIF1–eIF1A–eIF3–eIF3j initiation complex. Nat Struct Mol Biol 22, 269–271 (2015). https://doi.org/10.1038/nsmb.2963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing