Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor 8 senses degradation products of single-stranded RNA

Abstract

Toll-like receptor 8 (TLR8) recognizes viral or bacterial single-stranded RNA (ssRNA) and activates innate immune systems. TLR8 is activated by uridine- and guanosine-rich ssRNA as well as by certain synthetic chemicals; however, the molecular basis for ssRNA recognition has remained unknown. In this study, to elucidate the recognition mechanism of ssRNA, we determined the crystal structures of human TLR8 in complex with ssRNA. TLR8 recognized two degradation products of ssRNA—uridine and a short oligonucleotide—at two distinct sites: uridine bound the site on the dimerization interface where small chemical ligands are recognized, whereas short oligonucleotides bound a newly identified site on the concave surface of the TLR8 horseshoe structure. Site-directed mutagenesis revealed that both binding sites were essential for activation of TLR8 by ssRNA. These results demonstrate that TLR8 is a sensor for both uridine and a short oligonucleotide derived from RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of human TLR8.
Figure 2: ssRNA recognition by TLR8.
Figure 3: LC-MS analyses of dissolved TLR8–ORN06 crystals.
Figure 4: Ligand recognition at the first site of TLR8.
Figure 5: Binding affinities for mononucleosides and a synergistic effect of uridine and oligonucleotide.
Figure 6: Proposed mechanism of TLR8 activation by binding of ssRNA.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Song, D.H. & Lee, J.O. Sensing of microbial molecular patterns by Toll-like receptors. Immunol. Rev. 250, 216–229 (2012).

    Article  Google Scholar 

  2. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  3. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  4. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  Google Scholar 

  5. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  6. Alexopoulou, L. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8, 878–884 (2002).

    Article  CAS  Google Scholar 

  7. Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    Article  CAS  Google Scholar 

  8. Akira, S. TLR signaling. Curr. Top. Microbiol. Immunol. 311, 1–16 (2006).

    CAS  PubMed  Google Scholar 

  9. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  Google Scholar 

  10. Roach, J.C. et al. The evolution of vertebrate Toll-like receptors. Proc. Natl. Acad. Sci. USA 102, 9577–9582 (2005).

    Article  CAS  Google Scholar 

  11. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Sousa, C.R.E. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  Google Scholar 

  12. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  Google Scholar 

  13. Wang, J.P. et al. Toll-like receptor-mediated activation of neutrophils by influenza A virus. Blood 112, 2028–2034 (2008).

    Article  CAS  Google Scholar 

  14. Lund, J.M. et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101, 5598–5603 (2004).

    Article  CAS  Google Scholar 

  15. Triantafilou, K. et al. Human cardiac inflammatory responses triggered by Coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent. Cell. Microbiol. 7, 1117–1126 (2005).

    Article  CAS  Google Scholar 

  16. Cervantes, J.L. et al. Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes. J. Leukoc. Biol. 94, 1231–1241 (2013).

    Article  Google Scholar 

  17. Gantier, M.P. et al. Genetic modulation of TLR8 response following bacterial phagocytosis. Hum. Mutat. 31, 1069–1079 (2010).

    Article  CAS  Google Scholar 

  18. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  19. Sioud, M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348, 1079–1090 (2005).

    Article  CAS  Google Scholar 

  20. Sioud, M. Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur. J. Immunol. 36, 1222–1230 (2006).

    Article  CAS  Google Scholar 

  21. Barrat, F.J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    Article  CAS  Google Scholar 

  22. Diebold, S.S. et al. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 36, 3256–3267 (2006).

    Article  CAS  Google Scholar 

  23. Forsbach, A. et al. Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J. Immunol. 180, 3729–3738 (2008).

    Article  CAS  Google Scholar 

  24. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  Google Scholar 

  25. Jurk, M. et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3, 499 (2002).

    Article  CAS  Google Scholar 

  26. Kokatla, H.P. et al. Structure-based design of novel human Toll-like receptor 8 agonists. ChemMedChem 9, 719–723 (2014).

    Article  CAS  Google Scholar 

  27. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  Google Scholar 

  28. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  29. Tanji, H., Ohto, U., Shibata, T., Miyake, K. & Shimizu, T. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science 339, 1426–1429 (2013).

    Article  CAS  Google Scholar 

  30. Li, Y. et al. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response. Microbes Infect. 15, 88–95 (2013).

    Article  CAS  Google Scholar 

  31. Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    Article  CAS  Google Scholar 

  32. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  CAS  Google Scholar 

  33. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  Google Scholar 

  36. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).

    Article  CAS  Google Scholar 

  37. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  38. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  39. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Taoka, M. et al. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes. Nucleic Acids Res. 37, e140 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the beamline staff members at Photon Factory and SPring-8 for their assistance with data collection. We also thank M. Osawa and I. Shimada for their help with the ITC data acquisition. This work was supported by Grants-in-Aid from the Japan Society for the Promotion of Science KAKENHI, grant nos. 25121709, 25115504, 26711002 (U.O.), 25860354 (T. Shibata), 25253032 (K.M.), 23116007 and 25291010 (T. Shimizu); by the Takeda Science Foundation (U.O. and T. Shimizu); and by the Mochida Memorial Foundation for Medical and Pharmaceutical Research (U.O.).

Author information

Authors and Affiliations

Authors

Contributions

H.T. and U.O. performed the crystallization and structure determination. T. Shibata and K.M. performed the functional analyses. M.T., Y.Y. and T.I. performed LC-MS. H.T., U.O., T. Shibata, K.M. and T. Shimizu analyzed the results. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Toshiyuki Shimizu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Structures of TLR8 in complex with ssRNA.

(a, b) Structures of TLR8–ssRNA40 (a) and TLR8–ORN06S (b). Front (left) and side (right) views of the structures. Uridine is recognized at the 1st site, and UG is recognized at the 2nd site.

(c) Surface representations of a protomer of TLR8–ORN06 dimer. The protein-protein interface is shown in orange, the 1st site is shown in red, and the 2nd site is shown in purple.

(d) Superposition of oligonucleotides bound at the 2nd sites of TLR8–ORN06, TLR8–ssRNA40 and TLR8–ORN06S. UG in TLR8–ORN06, TLR8–ssRNA40 and TLR8–ORN06S are shown in purple, cyan and orange, respectively.

Supplementary Figure 2 Electron density maps for the bound ligand.

(a-d) Electron density (shown in gray) contoured around the ligand at the 3.0σ level in the Fo-Fc map; uridine and UG in TLR8– ORN06 (a), TLR8–ssRNA40 (b), TLR8– ORN06S (c) and uridine in TLR8–uridine (d).

Supplementary Figure 3 Close-up views of the first and second sites of TLR8–ssRNA40 and TLR8–ORN06S.

(a) The 1st site of TLR8–ssRNA40. Uridine (shown in yellow) was modeled into the structure.

(b) The 2nd site of TLR8–ssRNA40. Electron density corresponding to a pyrimidine-purine dinucleotide was observed at the 2nd site and assigned tentatively as UG (shown in purple).

(c) The 1st site of TLR8–ORN06S. Uridine was modeled into the structure, and is shown in yellow.

(d) The 2nd site of TLR8–ORN06S. UG was modeled into the structure, and is shown in purple.

Supplementary Figure 4 Sequence alignment of human, bovine and mouse TLR7 and TLR8.

Sequence alignments are displayed for each LRR module. The 1st and 2nd sites deduced from chain A of the TLR8–ORN06 complex are indicated by yellow and blue highlightings, respectively. The residues missing in the structure are highlighted in grey. Alignments were performed using CLUSTALW software (EMBL-European Bioinformatics Institute). Residues are colored to indicate the degree of similarity; red residues display the highest similarity, followed by green, blue, and then black (lowest similarity).

Supplementary Figure 5 Structures of TLR8 in complex with uridine.

(a) Front (left) and side (right) views of the structure. Uridine is recognized at the 1st site.

(b) Residues involved the interaction of TLR8 with uridine. The C atoms of the ligand molecules are shown in yellow. Water molecules mediating ligand recognition are indicated by red spheres, and hydrogen bonds are indicated by dashed lines.

Supplementary Figure 6 Small-angle X-ray scattering analysis of TLR8 in complex with ssRNA.

Scattering curves of hTLR8 by SAXS experiments are shown. The proteins used for SAXS were unliganded hTLR8 (red), hTLR8 in the presence of ORN06 (blue), and hTLR8 in the presence of R848 (black).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 1837 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanji, H., Ohto, U., Shibata, T. et al. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat Struct Mol Biol 22, 109–115 (2015). https://doi.org/10.1038/nsmb.2943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing