Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From guide to target: molecular insights into eukaryotic RNA-interference machinery

Subjects

This article has been updated

Abstract

Since its relatively recent discovery, RNA interference (RNAi) has emerged as a potent, specific and ubiquitous means of gene regulation. Through a number of pathways that are conserved in eukaryotes from yeast to humans, small noncoding RNAs direct molecular machinery to silence gene expression. In this Review, we focus on mechanisms and structures that govern RNA silencing in higher organisms. In addition to highlighting recent advances, we discuss parallels and differences among RNAi pathways. Together, the studies reviewed herein reveal the versatility and programmability of RNA-induced silencing complexes and emphasize the importance of both upstream biogenesis and downstream silencing factors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies for RNA recognition and processing.
Figure 2: Structures and modes of effector-step silencing.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 21 January 2015

    In the version of this article initially published, references 92 and 93 had been inadvertently switched. Reference 92 should refer to Winter, J. & Diederichs, S. and reference 93 to Schirle, N.T., Sheu-Gruttadauria, J. & MacRae, I.J. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  2. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Fagard, M., Boutet, S., Morel, J.B., Bellini, C. & Vaucheret, H. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. USA 97, 11650–11654 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ghildiyal, M. & Zamore, P.D. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Castel, S.E. & Martienssen, R.A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guzzardo, P.M., Muerdter, F. & Hannon, G.J. The piRNA pathway in flies: highlights and future directions. Curr. Opin. Genet. Dev. 23, 44–52 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ha, M. & Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Wilson, R.C. & Doudna, J.A. Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42, 217–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Finnegan, E.F. & Pasquinelli, A.E. MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 48, 51–68 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, Y. Principles of micro-RNA production and maturation. Oncogene 25, 6156–6162 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Bellemer, C. et al. Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes. J. Cell Sci. 125, 2709–2720 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Zeng, Y. & Cullen, B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem. 280, 27595–27603 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Mueller, G.A. et al. Solution structure of the Drosha double-stranded RNA-binding domain. Silence 1, 2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Senturia, R. et al. Structure of the dimerization domain of DiGeorge critical region 8. Protein Sci. 19, 1354–1365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sohn, S.Y. et al. Crystal structure of human DGCR8 core. Nat. Struct. Mol. Biol. 14, 847–853 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Faller, M. et al. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA 16, 1570–1583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. MacRae, I.J. & Doudna, J.A. Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr. Opin. Struct. Biol. 17, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, E., Zhou, K., Kidwell, M.A. & Doudna, J.A. Coordinated activities of human dicer domains in regulatory RNA processing. J. Mol. Biol. 422, 466–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macrae, I.J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lau, P.W. et al. The molecular architecture of human Dicer. Nat. Struct. Mol. Biol. 19, 436–440 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian, Y. et al. A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol. Cell 53, 606–616 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Du, Z., Lee, J.K., Tjhen, R., Stroud, R.M. & James, T.L. Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc. Natl. Acad. Sci. USA 105, 2391–2396 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Takeshita, D. et al. Homodimeric structure and double-stranded RNA cleavage activity of the C-terminal RNase III domain of human dicer. J. Mol. Biol. 374, 106–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Park, J.E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doyle, M. & Jantsch, M.F. New and old roles of the double-stranded RNA-binding domain. J. Struct. Biol. 140, 147–153 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, H.W. et al. Structural insights into RNA processing by the human RISC-loading complex. Nat. Struct. Mol. Biol. 16, 1148–1153 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Czech, B. & Hannon, G.J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Lee, H.Y., Zhou, K., Smith, A.M., Noland, C.L. & Doudna, J.A. Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 41, 6568–6576 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamashita, S. et al. Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein. Protein Sci. 20, 118–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Brennecke, J. et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Muerdter, F. et al. Production of artificial piRNAs in flies and mice. RNA 18, 42–52 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, F. et al. UAP56 couples piRNA clusters to the perinuclear transposon silencing machinery. Cell 151, 871–884 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ipsaro, J.J., Haase, A.D., Knott, S.R., Joshua-Tor, L. & Hannon, G.J. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491, 279–283 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nishimasu, H. et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491, 284–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Schüpbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).

    PubMed  PubMed Central  Google Scholar 

  47. Haase, A.D. et al. Probing the initiation and effector phases of the somatic piRNA pathway in Drosophila. Genes Dev. 24, 2499–2504 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Selvy, P.E., Lavieri, R.R., Lindsley, C.W. & Brown, H.A. Phospholipase D: enzymology, functionality, and chemical modulation. Chem. Rev. 111, 6064–6119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Czech, B., Preall, J.B., McGinn, J. & Hannon, G.J. A transcriptome-wide RNAi screen in the Drosophila ovary reveals factors of the germline piRNA pathway. Mol. Cell 50, 749–761 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Handler, D. et al. The genetic makeup of the Drosophila piRNA pathway. Mol. Cell 50, 762–777 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Muerdter, F. et al. A genome-wide RNAi screen draws a genetic framework for transposon control and primary piRNA biogenesis in Drosophila. Mol. Cell 50, 736–748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pane, A., Jiang, P., Zhao, D.Y., Singh, M. & Schupbach, T. The Cutoff protein regulates piRNA cluster expression and piRNA production in the Drosophila germline. EMBO J. 30, 4601–4615 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Klattenhoff, C. et al. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138, 1137–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Z. et al. The HP1 homolog rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157, 1353–1363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mohn, F., Sienski, G., Handler, D. & Brennecke, J. The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157, 1364–1379 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Kawaoka, S., Izumi, N., Katsuma, S. & Tomari, Y. 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell 43, 1015–1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Horwich, M.D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Saito, K., Sakaguchi, Y., Suzuki, T., Siomi, H. & Siomi, M.C. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi- interacting RNAs at their 3′ ends. Genes Dev. 21, 1603–1608 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang, Y. et al. Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 461, 823–827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuhn, C.D. & Joshua-Tor, L. Eukaryotic Argonautes come into focus. Trends Biochem. Sci. 38, 263–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Tolia, N.H. & Joshua-Tor, L. Slicer and the argonautes. Nat. Chem. Biol. 3, 36–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Gurtan, A.M. & Sharp, P.A. The role of miRNAs in regulating gene expression networks. J. Mol. Biol. 425, 3582–3600 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olejniczak, S.H., La Rocca, G., Gruber, J.J. & Thompson, C.B. Long-lived microRNA-Argonaute complexes in quiescent cells can be activated to regulate mitogenic responses. Proc. Natl. Acad. Sci. USA 110, 157–162 (2013).

    Article  PubMed  Google Scholar 

  66. Smibert, P., Yang, J.S., Azzam, G., Liu, J.L. & Lai, E.C. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Llave, C., Xie, Z., Kasschau, K.D. & Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Pillai, R.S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bazzini, A.A., Lee, M.T. & Giraldez, A.J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Béthune, J., Artus-Revel, C.G. & Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells. EMBO Rep. 13, 716–723 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Frank, F., Hauver, J., Sonenberg, N. & Nagar, B. Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. EMBO J. 31, 3588–3595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Yan, K.S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rivas, F.V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Faehnle, C.R., Elkayam, E., Haase, A.D., Hannon, G.J. & Joshua-Tor, L. The making of a slicer: activation of human Argonaute-1. Cell Reports 3, 1901–1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Hauptmann, J. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20, 814–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Hauptmann, J., Kater, L., Loffler, P., Merkl, R. & Meister, G. Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. RNA 20, 1532–1538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nakanishi, K. et al. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Reports 3, 1893–1900 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Schürmann, N., Trabuco, L.G., Bender, C., Russell, R.B. & Grimm, D. Molecular dissection of human Argonaute proteins by DNA shuffling. Nat. Struct. Mol. Biol. 20, 818–826 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Wilczynska, A. & Bushell, M. The complexity of miRNA-mediated repression. Cell Death Differ. 10.1038/cdd.2014.112 (5 September 2014).

  90. Elkayam, E. et al. The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Winter, J. & Diederichs, S. Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol. 8, 1149–1157 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Schirle, N.T., Sheu-Gruttadauria, J. & MacRae, I.J. Gene regulation. Structural basis for microRNA targeting. Science 346, 608–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Braun, J.E., Huntzinger, E. & Izaurralde, E. The role of GW182 proteins in miRNA-mediated gene silencing. Adv. Exp. Med. Biol. 768, 147–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Lian, S.L. et al. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15, 804–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Braun, J.E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs. Nat. Struct. Mol. Biol. 18, 1218–1226 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Fabian, M.R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4–NOT. Nat. Struct. Mol. Biol. 18, 1211–1217 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Fabian, M.R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Jinek, M., Fabian, M.R., Coyle, S.M., Sonenberg, N. & Doudna, J.A. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Nat. Struct. Mol. Biol. 17, 238–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zekri, L., Kuzuoglu-Ozturk, D. & Izaurralde, E. GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation. EMBO J. 32, 1052–1065 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chen, Y. et al. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54, 737–750 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Mathys, H. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54, 751–765 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Johnston, M. & Hutvagner, G. Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation. Silence 2, 5 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cora, E. et al. The MID-PIWI module of Piwi proteins specifies nucleotide- and strand-biases of piRNAs. RNA 20, 773–781 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tian, Y., Simanshu, D.K., Ma, J.B. & Patel, D.J. Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc. Natl. Acad. Sci. USA 108, 903–910 (2011).

    Article  PubMed  Google Scholar 

  107. Gunawardane, L.S. et al. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315, 1587–1590 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Saito, K. et al. Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev. 20, 2214–2222 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Aravin, A.A. et al. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aravin, A.A. & Bourc'his, D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev. 22, 970–975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Klenov, M.S. et al. Repeat-associated siRNAs cause chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res. 35, 5430–5438 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, S.H. & Elgin, S.C. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line. Proc. Natl. Acad. Sci. USA 108, 21164–21169 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Darricarrère, N., Liu, N., Watanabe, T. & Lin, H. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity. Proc. Natl. Acad. Sci. USA 110, 1297–1302 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Liu, Y. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325, 750–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ye, X. et al. Structure of C3PO and mechanism of human RISC activation. Nat. Struct. Mol. Biol. 18, 650–657 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, C., Nott, T.J., Jin, J. & Pawson, T. Deciphering arginine methylation: Tudor tells the tale. Nat. Rev. Mol. Cell Biol. 12, 629–642 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Dönertas, D., Sienski, G. & Brennecke, J. Drosophila Gtsf1 is an essential component of the Piwi-mediated transcriptional silencing complex. Genes Dev. 27, 1693–1705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ohtani, H. et al. DmGTSF1 is necessary for Piwi-piRISC-mediated transcriptional transposon silencing in the Drosophila ovary. Genes Dev. 27, 1656–1661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Yang, S.W. et al. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 18, 594–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ryter, J.M. & Schultz, S.C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 17, 7505–7513 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nowotny, M., Gaidamakov, S.A., Crouch, R.J. & Yang, W. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121, 1005–1016 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Petit, A.P. et al. The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res. 40, 11058–11072 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Saini, H.K., Griffiths-Jones, S. & Enright, A.J. Genomic analysis of human microRNA transcripts. Proc. Natl. Acad. Sci. USA 104, 17719–17724 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Auyeung, V.C., Ulitsky, I., McGeary, S.E. & Bartel, D.P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Berezikov, E., Chung, W.J., Willis, J., Cuppen, E. & Lai, E.C. Mammalian mirtron genes. Mol. Cell 28, 328–336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ruby, J.G., Jan, C.H. & Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kawamata, T. & Tomari, Y. Making RISC. Trends Biochem. Sci. 35, 368–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  128. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xiol, J. et al. RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts. Cell 157, 1698–1711 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Sienski, G., Donertas, D. & Brennecke, J. Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell 151, 964–980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Hammell and C. Faehnle for critical reading of the manuscript and for advice. We also thank I. MacRae for assistance with Figure 1c. L.J. is supported by the Cold Spring Harbor Laboratory Women in Science Award and as an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leemor Joshua-Tor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ipsaro, J., Joshua-Tor, L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 22, 20–28 (2015). https://doi.org/10.1038/nsmb.2931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing