Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolutionary journey of Argonaute proteins

Abstract

Argonaute proteins are conserved throughout all domains of life. Recently characterized prokaryotic Argonaute proteins (pAgos) participate in host defense by DNA interference, whereas eukaryotic Argonaute proteins (eAgos) control a wide range of processes by RNA interference. Here we review molecular mechanisms of guide and target binding by Argonaute proteins, and describe how the conformational changes induced by target binding lead to target cleavage. On the basis of structural comparisons and phylogenetic analyses of pAgos and eAgos, we reconstruct the evolutionary journey of the Argonaute proteins through the three domains of life and discuss how different structural features of pAgos and eAgos relate to their distinct physiological roles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain architectures of the PIWI superfamily proteins.
Figure 2: TtAgo with 21-mer guide DNA (binary complex) and with complementary 12-mer target RNA (ternary complex) adopt cleavage-incompatible conformations.
Figure 3: TtAgo with 5′-phosphorylated 21-mer guide DNA and complementary 15-mer and 19-mer target RNAs (ternary complex) adopt cleavage-compatible conformations.
Figure 4: Structure-based insights into the cleavage mechanism of TtAgo.
Figure 5: Structures of binary complexes of KpAgo and hAGO2 bound to 5′-phosphorylated guide RNAs.
Figure 6: Phylogenetic trees of Argonaute proteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cerutti, L., Mian, N. & Bateman, A. Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem. Sci. 25, 481–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Shabalina, S.A. & Koonin, E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 23, 578–587 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Makarova, K.S., Wolf, Y.I., van der Oost, J. & Koonin, E.V. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct 4, 29 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ma, J.B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A-fulgidus Piwi protein. Nature 434, 666–670 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yuan, Y.R. et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. Mol. Cell 19, 405–419 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Y.L. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D.K. & Aravin, A.A. Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51, 594–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Swarts, D.C. et al. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507, 258–261 (2014).

  10. Wang, Y.L., Sheng, G., Juranek, S., Tuschl, T. & Patel, D.J. Structure of the guide-strand-containing argonaute silencing complex. Nature 456, 209–213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y.L. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sheng, G. et al. Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA 111, 652–657 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Elkayam, E. et al. The structure of human argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schirle, N.T. & MacRae, I.J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakanishi, K., Weinberg, D.E., Bartel, D.P. & Patel, D.J. Structure of yeast Argonaute with guide RNA. Nature 486, 368–374 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  16. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Rashid, U.J. et al. Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J. Biol. Chem. 282, 13824–13832 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Parker, J.S., Roe, S.M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. EMBO J. 23, 4727–4737 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parker, J.S., Roe, S.M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434, 663–666 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boland, A., Tritschler, F., Heimstadt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep. 11, 522–527 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Parker, J.S. How to slice: snapshots of Argonaute in action. Silence 1, 3 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426, 465–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Song, J.J. et al. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Yan, K.S. et al. Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat. Struct. Mol. Biol. 11, 576–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Parker, J.S., Parizotto, E.A., Wang, M., Roe, S.M. & Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell 33, 204–214 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kunne, T., Swarts, D.C. & Brouns, S.J. Planting the seed: target recognition of short guide RNAs. Trends Microbiol. 22, 74–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zander, A., Holzmeister, P., Klose, D., Tinnefeld, P. & Grohmann, D. Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol. 11, 45–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Nowotny, M. & Yang, W. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J. 25, 1924–1933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nowotny, M. Retroviral integrase superfamily: the structural perspective. EMBO Rep. 10, 144–151 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faehnle, C.R., Elkayam, E., Haase, A.D., Hannon, G.J. & Joshua-Tor, L. The making of a slicer: activation of human Argonaute-1. Cell Reports 3, 1901–1909 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Nakanishi, K. et al. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Reports 3, 1893–1900 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Kuhn, C.D. & Joshua-Tor, L. Eukaryotic Argonautes come into focus. Trends Biochem. Sci. 38, 263–271 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Boland, A., Huntzinger, E., Schmidt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure of the MID-PIWI lobe of a eukaryotic Argonaute protein. Proc. Natl. Acad. Sci. USA 108, 10466–10471 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huntzinger, E. et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res. 41, 978–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Pfaff, J. et al. Structural features of Argonaute-GW182 protein interactions. Proc. Natl. Acad. Sci. USA 110, E3770–E3779 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burroughs, A.M., Iyer, L.M. & Aravind, L. Two novel PIWI families: roles in inter-genomic conflicts in bacteria and Mediator-dependent modulation of transcription in eukaryotes. Biol. Direct 8, 13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Makarova, K.S., Wolf, Y.I. & Koonin, E.V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Res. 41, 4360–4377 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Price, M.N., Dehal, P.S. & Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Makarova, K.S., Aravind, L., Wolf, Y.I. & Koonin, E.V. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol. Direct 6, 38 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hock, J. & Meister, G. The Argonaute protein family. Genome Biol. 9, 210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia Silva, M.R. et al. Cloning, characterization and subcellular localization of a Trypanosoma cruzi argonaute protein defining a new subfamily distinctive of trypanosomatids. Gene 466, 26–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Conaway, R.C., Sato, S., Tomomori-Sato, C., Yao, T. & Conaway, J.W. The mammalian Mediator complex and its role in transcriptional regulation. Trends Biochem. Sci. 30, 250–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Djikeng, A., Shi, H., Tschudi, C. & Ullu, E. RNA interference in Trypanosoma brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24–26-nucleotide RNAs. RNA 7, 1522–1530 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tschudi, C., Shi, H., Franklin, J.B. & Ullu, E. Small interfering RNA-producing loci in the ancient parasitic eukaryote Trypanosoma brucei. BMC Genomics 13, 427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shi, H., Tschudi, C. & Ullu, E. An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei. RNA 12, 2063–2072 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnes, R.L., Shi, H., Kolev, N.G., Tschudi, C. & Ullu, E. Comparative genomics reveals two novel RNAi factors in Trypanosoma brucei and provides insight into the core machinery. PLoS Pathog. 8, e1002678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Patrick, K.L. et al. Distinct and overlapping roles for two Dicer-like proteins in the RNA interference pathways of the ancient eukaryote Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 106, 17933–17938 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shi, H., Chamond, N., Djikeng, A., Tschudi, C. & Ullu, E. RNA interference in Trypanosoma brucei: role of the n-terminal RGG domain and the polyribosome association of argonaute. J. Biol. Chem. 284, 36511–36520 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Sijen, T., Steiner, F.A., Thijssen, K.L. & Plasterk, R.H. Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 315, 244–247 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Guang, S. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription. Nature 465, 1097–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seth, M. et al. The C. elegans CSR-1 argonaute pathway counteracts epigenetic silencing to promote germline gene expression. Dev. Cell 27, 656–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wedeles, C.J., Wu, M.Z. & Claycomb, J.M. Protection of germline gene expression by the C. elegans Argonaute CSR-1. Dev. Cell 27, 664–671 (2013).

    Article  CAS  PubMed  Google Scholar 

  60. Ender, C. & Meister, G. Argonaute proteins at a glance. J. Cell Sci. 123, 1819–1823 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Meister, G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14, 447–459 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Cheloufi, S., Dos Santos, C.O., Chong, M.M. & Hannon, G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cifuentes, D. et al. A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fabian, M.R. & Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat. Struct. Mol. Biol. 19, 586–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Rogers, K. & Chen, X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25, 2383–2399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hauptmann, J. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat. Struct. Mol. Biol. 20, 814–817 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. van Rij, R.P. et al. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 20, 2985–2995 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S.W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Maillard, P.V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Wee, L.M., Flores-Jasso, C.F., Salomon, W.E. & Zamore, P.D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151, 1055–1067 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malone, C.D. & Hannon, G.J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ketting, R.F. The many faces of RNAi. Dev. Cell 20, 148–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Nishimasu, H. et al. Structure and function of Zucchini endoribonuclease in piRNA biogenesis. Nature 491, 284–287 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Mochizuki, K. & Gorovsky, M.A.A. Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes Dev. 19, 77–89 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sandoval, P.Y., Swart, E.C., Arambasic, M. & Nowacki, M. Functional diversification of Dicer-like proteins and small RNAs required for genome sculpting. Dev. Cell 28, 174–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Frank, F., Hauver, J., Sonenberg, N. & Nagar, B. Arabidopsis Argonaute MID domains use their nucleotide specificity loop to sort small RNAs. EMBO J. 31, 3588–3595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawaoka, S., Izumi, N., Katsuma, S. & Tomari, Y. 3′ end formation of PIWI-interacting RNAs in vitro. Mol. Cell 43, 1015–1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Luteijn, M.J. & Ketting, R.F. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet. 14, 523–534 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Simon, B. et al. Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure 19, 172–180 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Tian, Y., Simanshu, D.K., Ma, J.B. & Patel, D.J. Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc. Natl. Acad. Sci. USA 108, 903–910 (2011).

    Article  PubMed  Google Scholar 

  83. Shi, H. et al. Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. Eukaryot. Cell 13, 77–86 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Horwich, M.D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol. 17, 1265–1272 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Ameres, S.L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. van Wolfswinkel, J.C. et al. CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs. Cell 139, 135–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Hutvagner, G. & Simard, M.J. Argonaute proteins: key players in RNA silencing. Nat. Rev. Mol. Cell Biol. 9, 22–32 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Jinek, M. & Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Hur, J.K., Zinchenko, M.K., Djuranovic, S. & Green, R. Regulation of Argonaute slicer activity by guide RNA 3′ end interactions with the N-terminal lobe. J. Biol. Chem. 288, 7829–7840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kwak, P.B. & Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly. Nat. Struct. Mol. Biol. 19, 145–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol. 16, 953–960 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Yoda, M. et al. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 17, 17–23 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Iyer, L.M., Makarova, K.S., Koonin, E.V. & Aravind, L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res. 32, 5260–5279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kinch, L.N., Ginalski, K., Rychlewski, L. & Grishin, N.V. Identification of novel restriction endonuclease-like fold families among hypothetical proteins. Nucleic Acids Res. 33, 3598–3605 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Knizewski, L., Kinch, L.N., Grishin, N.V., Rychlewski, L. & Ginalski, K. Realm of PD-(D/E)XK nuclease superfamily revisited: detection of novel families with modified transitive meta profile searches. BMC Struct. Biol. 7, 40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, J., Kasciukovic, T. & White, M.F. The CRISPR associated protein Cas4 Is a 5′ to 3′ DNA exonuclease with an iron-sulfur cluster. PLoS ONE 7, e47232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lemak, S. et al. Toroidal structure and DNA cleavage by the CRISPR-associated [4Fe-4S] cluster containing Cas4 nuclease SSO0001 from Sulfolobus solfataricus. J. Am. Chem. Soc. 135, 17476–17487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grazulis, S. et al. Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc. Natl. Acad. Sci. USA 102, 15797–15802 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Geserick, P., Kaiser, F., Klemm, U., Kaufmann, S.H. & Zerrahn, J. Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int. Immunol. 16, 1535–1548 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Aravind, L. & Koonin, E.V. DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res. 27, 4658–4670 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rana, R.R., Zhang, M., Spear, A.M., Atkins, H.S. & Byrne, B. Bacterial TIR-containing proteins and host innate immune system evasion. Med. Microbiol. Immunol. (Berl.) 202, 1–10 (2013).

    Article  CAS  Google Scholar 

  105. Brikos, C. & O'Neill, L.A. Signalling of toll-like receptors. Handb. Exp. Pharmacol. 183, 21–50 (2008).

  106. Palsson-McDermott, E.M. & O'Neill, L.A. Building an immune system from nine domains. Biochem. Soc. Trans. 35, 1437–1444 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Burch-Smith, T.M. & Dinesh-Kumar, S.P. The functions of plant TIR domains. Sci. STKE 2007, pe46 (2007).

    Article  PubMed  Google Scholar 

  108. Boubakri, H., de Septenville, A.L., Viguera, E. & Michel, B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 29, 145–157 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Netherlands Organization of Scientific Research (NWO) to J.v.d.O. (NWO-TOP, 845.10.003) and the US National Institutes of Health to D.J.P. (TR01 GM104962). K.M. and E.V.K. are supported by intramural funds of the US Department of Health and Human Services (to the National Library of Medicine). K.N. is supported by Precursory Research for Embryonic Science and Technology (PRESTO) from the Japan Science and Technology (JST) Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinshaw J Patel or John van der Oost.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note (PDF 50 kb)

Supplementary Data 1

Sequence alignment of prokaryotic Argonautes. (DOCX 79 kb)

Supplementary Data 2

Complete phylogenetic tree of prokaryotic Argonautes. (PDF 4337 kb)

Supplementary Data 3

Sequence alignment of eukaryotic Argonautes. (DOCX 49 kb)

Supplementary Data 4

Complete phylogenetic tree of eukaryotic Argonautes. (PDF 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarts, D., Makarova, K., Wang, Y. et al. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21, 743–753 (2014). https://doi.org/10.1038/nsmb.2879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2879

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing