Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems

Abstract

Although many proteins are localized after translation, asymmetric protein distribution is also achieved by translation after mRNA localization. Why are certain mRNA transported to a distal location and translated on-site? Here we undertake a systematic, genome-scale study of asymmetrically distributed protein and mRNA in mammalian cells. Our findings suggest that asymmetric protein distribution by mRNA localization enhances interaction fidelity and signaling sensitivity. Proteins synthesized at distal locations frequently contain intrinsically disordered segments. These regions are generally rich in assembly-promoting modules and are often regulated by post-translational modifications. Such proteins are tightly regulated but display distinct temporal dynamics upon stimulation with growth factors. Thus, proteins synthesized on-site may rapidly alter proteome composition and act as dynamically regulated scaffolds to promote the formation of reversible cellular assemblies. Our observations are consistent across multiple mammalian species, cell types and developmental stages, suggesting that localized translation is a recurring feature of cell signaling and regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification and characterization of TAS and DSS proteins.
Figure 2: Structural analysis of DSS proteins reveals an enrichment in disordered regions.
Figure 3: Analysis of DSS proteins reveals an enrichment for linear motifs, phase-transition (i.e., higher-order assembly) promoting segments and PTM sites that act as molecular switches.
Figure 4: Dynamic regulation of DSS transcripts and proteins.
Figure 5: An overview of the potential advantages conferred by distal-site protein synthesis, inferred from our analysis.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Martin, K.C. & Ephrussi, A. mRNA localization: gene expression in the spatial dimension. Cell 136, 719–730 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scott, J.D. & Pawson, T. Cell signaling in space and time: where proteins come together and when they're apart. Science 326, 1220–1224 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ephrussi, A., Dickinson, L.K. & Lehmann, R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37–50 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Holt, C.E. & Bullock, S.L. Subcellular mRNA localization in animal cells and why it matters. Science 326, 1212–1216 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jung, H., Gkogkas, C.G., Sonenberg, N. & Holt, C.E. Remote control of gene function by local translation. Cell 157, 26–40 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lecuyer, E. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Pertz, O.C. et al. Spatial mapping of the neurite and soma proteomes reveals a functional Cdc42/Rac regulatory network. Proc. Natl. Acad. Sci. USA 105, 1931–1936 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Y. et al. Profiling signaling polarity in chemotactic cells. Proc. Natl. Acad. Sci. USA 104, 8328–8333 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cajigas, I.J. et al. The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453–466 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S. & Amster-Choder, O. Translation-independent localization of mRNA in E. coli. Science 331, 1081–1084 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Huttelmaier, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. Weis, B.L., Schleiff, E. & Zerges, W. Protein targeting to subcellular organelles via MRNA localization. Biochim. Biophys. Acta 1833, 260–273 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Feltrin, D. et al. Growth cone MKK7 mRNA targeting regulates MAP1b-dependent microtubule bundling to control neurite elongation. PLoS Biol. 10, e1001439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Van Roey, K. et al. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem. Rev. 114, 6733–6778 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Bockers, T.M. et al. Differential expression and dendritic transcript localization of Shank family members: identification of a dendritic targeting element in the 3′ untranslated region of Shank1 mRNA. Mol. Cell. Neurosci. 26, 182–190 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Davey, N.E. et al. Attributes of short linear motifs. Mol. Biosyst. 8, 268–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Dosztanyi, Z., Meszaros, B. & Simon, I. ANCHOR: web server for predicting protein binding regions in disordered proteins. Bioinformatics 25, 2745–2746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Roey, K., Dinkel, H., Weatheritt, R.J., Gibson, T.J. & Davey, N.E. The switches.ELM Resource: A Compendium of Conditional Regulatory Interaction Interfaces. Sci. Signal. 6, rs7 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cumberworth, A., Lamour, G., Babu, M.M. & Gsponer, J. Promiscuity as a functional trait: intrinsically disordered regions as central players of interactomes. Biochem. J. 454, 361–369 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H. Higher-order assemblies in a new paradigm of signal transduction. Cell 153, 287–292 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takenawa, T. & Suetsugu, S. The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Van Roey, K., Gibson, T.J. & Davey, N.E. Motif switches: decision-making in cell regulation. Curr. Opin. Struct. Biol. 22, 378–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Honnappa, S. et al. An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366–376 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Mili, S., Moissoglu, K. & Macara, I.G. Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature 453, 115–119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nozumi, M. et al. Identification of functional marker proteins in the mammalian growth cone. Proc. Natl. Acad. Sci. USA 106, 17211–17216 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xiong, X. et al. Enrichment and proteomic analysis of plasma membrane from rat dorsal root ganglions. Proteome Sci. 7, 41 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gumy, L.F. et al. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17, 85–98 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  31. Gsponer, J. & Babu, M.M. Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Reports 2, 1425–1437 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Sasaki, Y., Gross, C., Xing, L., Goshima, Y. & Bassell, G.J. Identification of axon-enriched MicroRNAs localized to growth cones of cortical neurons. Dev. Neurobiol. 74, 397–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Gsponer, J., Futschik, M.E., Teichmann, S.A. & Babu, M.M. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322, 1365–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gibson, T.J., Seiler, M. & Veitia, R.A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. von Kriegsheim, A. et al. Cell fate decisions are specified by the dynamic ERK interactome. Nat. Cell Biol. 11, 1458–1464 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Christensen, G.L. et al. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol. Cell. Proteomics 9, 1540–1553 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mausbacher, N., Schreiber, T.B., Machatti, M., Schaab, C. & Daub, H. Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling. Proteomics 12, 3485–3498 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Buxbaum, A.R., Wu, B. & Singer, R.H. Single beta-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343, 419–422 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yoon, B.C. et al. Local translation of extranuclear lamin B promotes axon maintenance. Cell 148, 752–764 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scott, D.A., Das, U., Tang, Y. & Roy, S. Mechanistic logic underlying the axonal transport of cytosolic proteins. Neuron 70, 441–454 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vavouri, T., Semple, J.I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Babu, M.M., van der Lee, R., de Groot, N.S. & Gsponer, J. Intrinsically disordered proteins: regulation and disease. Curr. Opin. Struct. Biol. 21, 432–440 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Jones, R.B., Gordus, A., Krall, J.A. & MacBeath, G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439, 168–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Roux, P.P. & Topisirovic, I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb. Perspect. Biol. 4, a012252 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xue, S. & Barna, M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 13, 355–369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Marc, P. et al. Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep. 3, 159–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gibson, T.J. Cell regulation: determined to signal discrete cooperation. Trends Biochem. Sci. 34, 471–482 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Hyman, A.A. & Brangwynne, C.P. Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. Dev. Cell 21, 14–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Ladbury, J.E. & Arold, S.T. Noise in cellular signaling pathways: causes and effects. Trends Biochem. Sci. 37, 173–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, Y. et al. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499, 166–171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ji, S.J. & Jaffrey, S.R. Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron 74, 95–107 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kundel, M., Jones, K.J., Shin, C.Y. & Wells, D.G. Cytoplasmic polyadenylation element-binding protein regulates neurotrophin-3-dependent beta-catenin mRNA translation in developing hippocampal neurons. J. Neurosci. 29, 13630–13639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yudin, D. et al. Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59, 241–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hengst, U., Deglincerti, A., Kim, H.J., Jeon, N.L. & Jaffrey, S.R. Axonal elongation triggered by stimulus-induced local translation of a polarity complex protein. Nat. Cell Biol. 11, 1024–1030 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gavis, E.R. & Lehmann, R. Localization of nanos RNA controls embryonic polarity. Cell 71, 301–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Han, T.W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Ostlund, G. et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–D203 (2010).

    Article  PubMed  CAS  Google Scholar 

  60. Schwanhausser, B. et al. Corrigendum: Global quantification of mammalian gene expression control. Nature 495, 126–127 (2013).

    Article  PubMed  CAS  Google Scholar 

  61. Kinsella, R.J. et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford) 2011, bar030 (2011).

    Article  CAS  Google Scholar 

  62. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003).

    Article  Google Scholar 

  63. Bult, C.J., Eppig, J.T., Blake, J.A., Kadin, J.A. & Richardson, J.E. The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res. 41, D885–D891 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Franceschini, A. et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Ruepp, A. et al. CORUM: the comprehensive resource of mammalian protein complexes–2009. Nucleic Acids Res. 38, D497–D501 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Dosztanyi, Z., Csizmok, V., Tompa, P. & Simon, I. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J. Mol. Biol. 347, 827–839 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Weatheritt, R.J., Luck, K., Petsalaki, E., Davey, N.E. & Gibson, T.J. The identification of short linear motif-mediated interfaces within the human interactome. Bioinformatics 28, 976–982 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Halfmann, R. et al. Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol. Cell 43, 72–84 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Michelitsch, M.D. & Weissman, J.S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97, 11910–11915 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Toombs, J.A., McCarty, B.R. & Ross, E.D. Compositional determinants of prion formation in yeast. Mol. Cell. Biol. 30, 319–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Ader, C. et al. Amyloid-like interactions within nucleoporin FG hydrogels. Proc. Natl. Acad. Sci. USA 107, 6281–6285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Updike, D.L., Hachey, S.J., Kreher, J. & Strome, S. P granules extend the nuclear pore complex environment in the C. elegans germ line. J. Cell Biol. 192, 939–948 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Malinovska, L., Kroschwald, S. & Alberti, S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim. Biophys. Acta 1834, 918–931 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Hornbeck, P.V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 40, D71–D75 (2012).

  79. Griffiths-Jones, S., Saini, H.K., van Dongen, S. & Enright, A.J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Halees, A.S., El-Badrawi, R. & Khabar, K.S. ARED organism: expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Res. 36, D137–D140 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Pique, M., Lopez, J.M., Foissac, S., Guigo, R. & Mendez, R. A combinatorial code for CPE-mediated translational control. Cell 132, 434–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Gupta, R., Bhattacharyya, A., Agosto-Perez, F.J., Wickramasinghe, P. & Davuluri, R.V. MPromDb update 2010: an integrated resource for annotation and visualization of mammalian gene promoters and ChIP-seq experimental data. Nucleic Acids Res. 39, D92–D97 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. McGraw, K.O. & Wong, S.P. A common language effect size statistic. Psychol. Bull. 111, 361–365 (1992).

    Article  Google Scholar 

  85. Grissom, R.J. & Kim, J.J. Effect Sizes for Research: Univariate and Multivariate Applications (Routledge, 2012).

Download references

Acknowledgements

We thank S. Bullock, S. Balaji, C. Chothia, M. Buljan, B. Lang, M. Hegde, G. Chalancon, K. Van Roey, T. Flock, N. Latysheva, A.J. Venkatakrishnan and G. Toedt for stimulating discussions and their comments on this work. This work was supported by the Medical Research Council (MC_U105185859; R.J.W.; M.M.B.), Human Frontiers Science Program (RGY0073/2010; M.M.B.), the European Molecular Biology Organization Young Investigator Program (M.M.B.), ERASysBio+ (GRAPPLE; R.J.W. and M.M.B.), the European Molecular Biology Laboratory International PhD Program (R.J.W.) and a Canadian Institute of Health Research Postdoctoral Fellowship (R.J.W.).

Author information

Authors and Affiliations

Authors

Contributions

R.J.W. collected the data sets and performed the analysis; R.J.W. and M.M.B. designed the study; R.J.W., T.J.G. and M.M.B. conceived the idea and wrote the paper.

Corresponding authors

Correspondence to Robert J Weatheritt or M Madan Babu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 The identification of asymmetrically localized proteins and transcripts.

An illustrative explanation of the resolution of the study and the concept of asymmetric localization of proteins and mRNA. In this example, on the left a neuron is divided into its cell body and axon terminal, and transcriptome/proteomic analysis is undertaken on both samples. The Venn diagram describes the Cell Body (CB) and Axon Terminal (AT) regions with A and B representing protein/mRNA found within the proteomic/transcriptomics analyses respectively. AB proteins/mRNA are found in both screens. The proteins/mRNA found exclusively in set B are considered as asymmetrically localized to the axon terminals. A similar principle holds for the right-hand figure showing the fibroblast-like cells being divided into its cell body and pseudopodia. These studies employ a similar experimental set-up. In the case of fibroblast-like cells a gradient of the chemoattractant l-α-lysophosphatidic acid (LPA) induces pseudopodia formation in cell culture on a polycarbonate microporous filter. These are then scraped from the filter surface into lysis buffer for biochemical analysis30.

Supplementary Figure 2 Graphs and boxplots of functional and structural properties for distal site synthesis (DSS) proteins (red) and transport after synthesis (TAS) proteins (gray).

See Online Methods for details and legend of Figure 2 for a description of boxplots and statistical tests.

Supplementary Figure 3 Boxplots and graphs of functional and structural properties of distal site synthesis (DSS) proteins (red) and transport after synthesis (TAS) proteins (gray) when proteins with transmembrane regions were removed from the analysis.

See legend of Figure 2 for a description of boxplots and statistical tests.

Supplementary Figure 4 Graphs of cytoplasmic polyadenylation elements (CPE) and genomic differences between genes in the pseudopodia of mouse fibroblast cells comparing DSS transcripts (red) to TAS transcripts (gray).

The CPE interacts with CPEB1 and depending on the combination of HEX and/or CPSF elements can lead to either repression or activation of translation (See Supplementary Results). No difference is identified for the numbers of occurrence of alternative promoters, presence of splice variants or exons numbers between the transcripts from the two datasets (see Supplementary Results).

Supplementary Figure 5 Graphs and boxplots of translational repression elements and sequence differences between distal site synthesis (DSS) transcripts (red) and transport after synthesis (TAS) transcripts (gray).

See Online Methods for details and legend of Figure 2 for a description of boxplots and statistical tests (see Supplementary Results).

Supplementary Figure 6 Boxplots comparing the change in phosphorylation in distal site synthesis proteins as compared to transport after synthesis proteins across different time points in HeLa cells and SCC-9 cells after activation of signaling with EGF and LPA, respectively.

a. all phosphorylation sites and b. only tyrosine phosphorylation sites. The steady increase in phosphorylation is maintained over a longer time-course in DSS proteins than in TAS proteins. Between time point 10-20 minutes the DSS protein display a significant increase in tyrosine phosphorylation whereas the TAS proteins display a significant decrease in tyrosine phosphorylation (see Main Text for discussion). c changes in the phosphorylation state of regions close to putative linear motifs in SCC-9 cells compared to previous time point upon stimulation with lysophosphatidic acid. d, DSS proteins show higher levels of phosphorylation and maintain sustained phosphorylation after stimulation compared to TAS proteins in HEK-293 cells after stimulation with angiotensin (3 and 15 minutes time point). See legend of Figure 2 for a description of boxplots and statistical tests. d. changes in the phosphorylation states in HEK-293 cells. The abundance of phosphopeptides in DSS cells in maintained 15 minutes after stimulations. The abundance of TAS phosphopeptides drops significantly between 3 and 15 minutes.

Supplementary Figure 7 Boxplots comparing the genome-wide quantitative measurements of gene expression of mRNAs associated with free (in this case TAS) and mitochondrion-bound (in this case DSS) polysomes in yeast.

The top row of boxplots describes the genome-wide features associated with the transcriptional rate (left), mRNA abundance (center) and mRNA half-life (right), with the first two reflecting those results found for localized mRNA in fibroblast-like cells in mouse. The middle row of boxplots describe the genome-wide features associated with protein translation rate (left), protein abundance (center) and protein half-life (right) and similarly reflect the aforementioned results found in mouse. Finally, the bottom row describes molecular features of mRNA found associated with mitochondrion-bound polysomes. These results are different from our own aforementioned results. This is in-line with these proteins being of bacterial origin. The datasets used in each case are referenced in the boxplot title. For descriptions of datasets see Supplementary Table 1. See legend of Figure 2 for a description of boxplots and statistical tests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1 and 2, and Supplementary Note (PDF 3712 kb)

Supplementary Table 3

The results for the genome-wide analysis of asymmetrically localized proteins and transcripts from a mouse neuroblastoma cell line. (DOCX 469 kb)

Supplementary Table 4

The fibroblast-like cell line conversion table concatenated with results from genome-wide gene expression studies Ensembl_human IPI number EnsEMB. (DOCX 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weatheritt, R., Gibson, T. & Babu, M. Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems. Nat Struct Mol Biol 21, 833–839 (2014). https://doi.org/10.1038/nsmb.2876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing