Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon–anticodon duplex

Abstract

During translation, elongation factor G (EF-G) catalyzes the translocation of tRNA2–mRNA inside the ribosome. Translocation is coupled to a cycle of conformational rearrangements of the ribosomal machinery, and how EF-G initiates translocation remains unresolved. Here we performed systematic mutagenesis of Escherichia coli EF-G and analyzed inhibitory single-site mutants of EF-G that preserved pretranslocation (Pre)-state ribosomes with tRNAs in A/P and P/E sites (Pre–EF-G). Our results suggest that the interactions between the decoding center and the codon–anticodon duplex constitute the barrier for translocation. Catalysis of translocation by EF-G involves the factor's highly conserved loops I and II at the tip of domain IV, which disrupt the hydrogen bonds between the decoding center and the duplex to release the latter, hence inducing subsequent translocation events, namely 30S head swiveling and tRNA2–mRNA movement on the 30S subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interaction patterns and conservation of loops I and II.
Figure 2: EF-G mutants containing various tip substitutions inhibit translation.
Figure 3: Loop mutants do not impair factor binding to ribosomes and GTPase activity.
Figure 4: Loop mutants fail to support translocation of tRNA and mRNA.
Figure 5: Loop mutants sample the state of intersubunit rotation but cannot enter the DC.
Figure 6: FRET analyses of 30S head swiveling and working model of EF-G–catalyzed translocation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Moore, P.B. & Steitz, T.A. The roles of RNA in the synthesis of protein. Cold Spring Harb. Perspect. Biol. 3, a003780 (2011).

    Article  Google Scholar 

  2. Ramakrishnan, V. The ribosome: some hard facts about its structure and hot air about its evolution. Cold Spring Harb. Symp. Quant. Biol. 74, 25–33 (2009).

    Article  CAS  Google Scholar 

  3. Frank, J. Intermediate states during mRNA-tRNA translocation. Curr. Opin. Struct. Biol. 22, 778–785 (2012).

    Article  CAS  Google Scholar 

  4. Katunin, V.I., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41, 12806–12812 (2002).

    Article  CAS  Google Scholar 

  5. Frank, J., Gao, H., Sengupta, J., Gao, N. & Taylor, D.J. The process of mRNA-tRNA translocation. Proc. Natl. Acad. Sci. USA 104, 19671–19678 (2007).

    Article  CAS  Google Scholar 

  6. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  Google Scholar 

  7. Ratje, A.H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    Article  CAS  Google Scholar 

  8. Li, W., Trabuco, L.G., Schulten, K. & Frank, J. Molecular dynamics of EF-G during translocation. Proteins 79, 1478–1486 (2011).

    Article  CAS  Google Scholar 

  9. Tourigny, D.S., Fernandez, I.S., Kelley, A.C. & Ramakrishnan, V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490 (2013).

    Article  Google Scholar 

  10. Zhou, J., Lancaster, L., Donohue, J.P. & Noller, H.F. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086 (2013).

    Article  Google Scholar 

  11. Pulk, A. & Cate, J.H. Control of ribosomal subunit rotation by elongation factor G. Science 340, 1235970 (2013).

    Article  Google Scholar 

  12. Chen, Y., Feng, S., Kumar, V., Ero, R. & Gao, Y.G. Structure of EF-G–ribosome complex in a pretranslocation state. Nat. Struct. Mol. Biol. 20, 1077–1084 (2013).

    Article  CAS  Google Scholar 

  13. Qin, Y. et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127, 721–733 (2006).

    Article  CAS  Google Scholar 

  14. Liu, H., Pan, D., Pech, M. & Cooperman, B.S. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. J. Mol. Biol. 396, 1043–1052 (2010).

    Article  CAS  Google Scholar 

  15. Liu, H. et al. The conserved protein EF4 (LepA) modulates the elongation cycle of protein synthesis. Proc. Natl. Acad. Sci. USA 108, 16223–16228 (2011).

    Article  CAS  Google Scholar 

  16. Zhang, D. & Qin, Y. The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem. J. 452, 173–181 (2013).

    Article  CAS  Google Scholar 

  17. Martemyanov, K.A. & Gudkov, A.T. Domain IV of elongation factor G from Thermus thermophilus is strictly required for translocation. FEBS Lett. 452, 155–159 (1999).

    Article  CAS  Google Scholar 

  18. Savelsbergh, A., Matassova, N.B., Rodnina, M.V. & Wintermeyer, W. Role of domains 4 and 5 in elongation factor G functions on the ribosome. J. Mol. Biol. 300, 951–961 (2000).

    Article  CAS  Google Scholar 

  19. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  Google Scholar 

  20. Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M. & Yusupova, G. A new understanding of the decoding principle on the ribosome. Nature 484, 256–259 (2012).

    Article  CAS  Google Scholar 

  21. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  Google Scholar 

  22. Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M. & Blanchard, S.C. Navigating the ribosome's metastable energy landscape. Trends Biochem. Sci. 34, 390–400 (2009).

    Article  CAS  Google Scholar 

  23. Chen, C. et al. Single-molecule fluorescence measurements of ribosomal translocation dynamics. Mol. Cell 42, 367–377 (2011).

    Article  CAS  Google Scholar 

  24. Feng, S., Chen, Y. & Gao, Y.G. Crystal structure of 70S ribosome with both cognate tRNAs in the E and P sites representing an authentic elongation complex. PLoS ONE 8, e58829 (2013).

    Article  CAS  Google Scholar 

  25. Yamamoto, H. et al. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat. Rev. Microbiol. 12, 89–100 (2014).

    Article  CAS  Google Scholar 

  26. Tsuboi, M. et al. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol. Cell 35, 502–510 (2009).

    Article  CAS  Google Scholar 

  27. Spahn, C.M. et al. Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol. Cell 7, 1037–1045 (2001).

    Article  CAS  Google Scholar 

  28. Connell, S.R. et al. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J. 22, 945–953 (2003).

    Article  CAS  Google Scholar 

  29. Dönhöfer, A. et al. Structural basis for TetM-mediated tetracycline resistance. Proc. Natl. Acad. Sci. USA 109, 16900–16905 (2012).

    Article  Google Scholar 

  30. Li, W. et al. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Nat. Commun. 4, 1477 (2013).

    Article  Google Scholar 

  31. Gausing, K. Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and of ribosomal protein messenger RNA at different growth rates. J. Mol. Biol. 115, 335–354 (1977).

    Article  CAS  Google Scholar 

  32. Connell, S.R. et al. A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat. Struct. Mol. Biol. 15, 910–915 (2008).

    Article  CAS  Google Scholar 

  33. Czworkowski, J., Wang, J., Seitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  Google Scholar 

  34. Moazed, D. & Noller, H.F. Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in the 16S rRNA. J. Mol. Biol. 211, 135–145 (1990).

    Article  CAS  Google Scholar 

  35. Spiegel, P.C., Ermolenko, D.N. & Noller, H.F. Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13, 1473–1482 (2007).

    Article  CAS  Google Scholar 

  36. Ramrath, D.J. et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl. Acad. Sci. USA 110, 20964–20969 (2013).

    Article  CAS  Google Scholar 

  37. Brilot, A.F., Korostelev, A.A., Ermolenko, D.N. & Grigorieff, N. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl. Acad. Sci. USA 110, 20994–20999 (2013).

    Article  CAS  Google Scholar 

  38. Matassova, A.B., Rodnina, M.V. & Wintermeyer, W. Elongation factor G-induced structural change in helix 34 of 16S rRNA related to translocation on the ribosome. RNA 7, 1879–1885 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, W., Dunkle, J.A. & Cate, J.H. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    Article  CAS  Google Scholar 

  40. Guo, Z. & Noller, H.F. Rotation of the head of the 30S ribosomal subunit during mRNA translocation. Proc. Natl. Acad. Sci. USA 109, 20391–20394 (2012).

    Article  CAS  Google Scholar 

  41. Khade, P.K., Shi, X. & Joseph, S. Steric complementarity in the decoding center is important for tRNA selection by the ribosome. J. Mol. Biol. 425, 3778–3789 (2013).

    Article  CAS  Google Scholar 

  42. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  Google Scholar 

  43. Agirrezabala, X. et al. Structural insights into cognate versus near-cognate discrimination during decoding. EMBO J. 30, 1497–1507 (2011).

    Article  CAS  Google Scholar 

  44. Joseph, S. & Noller, H.F. EF-G-catalyzed translocation of anticodon stem-loop analogs of transfer RNA in the ribosome. EMBO J. 17, 3478–3483 (1998).

    Article  CAS  Google Scholar 

  45. Phelps, S.S., Jerinic, O. & Joseph, S. Universally conserved interactions between the ribosome and the anticodon stem-loop of a site tRNA important for translocation. Mol. Cell 10, 799–807 (2002).

    Article  CAS  Google Scholar 

  46. Khade, P.K. & Joseph, S. Messenger RNA interactions in the decoding center control the rate of translocation. Nat. Struct. Mol. Biol. 18, 1300–1302 (2011).

    Article  CAS  Google Scholar 

  47. Garcia-Ortega, L., Stephen, J. & Joseph, S. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G-dependent translocation. Mol. Cell 32, 292–299 (2008).

    Article  CAS  Google Scholar 

  48. Abdi, N.M. & Fredrick, K. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. RNA 11, 1624–1632 (2005).

    Article  CAS  Google Scholar 

  49. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  Google Scholar 

  50. Spirin, A.S. The ribosome as a conceying themal ratchet machine. J. Biol. Chem. 284, 21103–21119 (2009).

    Article  CAS  Google Scholar 

  51. Zhang, D. et al. Common chaperone activity in the G-domain of trGTPase protects L11-L12 interaction on the ribosome. Nucleic Acids Res. 40, 10851–10865 (2012).

    Article  CAS  Google Scholar 

  52. Walker, S.E., Shoji, S., Pan, D., Cooperman, B.S. & Fredrick, K. Role of hybrid tRNA-binding states in ribosomal translocation. Proc. Natl. Acad. Sci. USA 105, 9192–9197 (2008).

    Article  CAS  Google Scholar 

  53. Wang, L. et al. A conserved proline switch on the ribosome facilitates the recruitment and binding of trGTPases. Nat. Struct. Mol. Biol. 19, 403–410 (2012).

    Article  CAS  Google Scholar 

  54. Hansson, S., Singh, R., Gudkov, A.T., Liljas, A. & Logan, D.T. Structural insights into fusidic acid resistance and sensitivity in EF-G. J. Mol. Biol. 348, 939–949 (2005).

    Article  CAS  Google Scholar 

  55. Martemyanov, K.A., Liljas, A. & Gudkov, A.T. Extremely thermostable elongation factor G from Aquifex aeolicus: cloning, expression, purification, and characterization in a heterologous translation system. Protein Expr. Purif. 18, 257–261 (2000).

    Article  CAS  Google Scholar 

  56. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  57. Bailey, C.H. & Kandel, E.R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

    Article  CAS  Google Scholar 

  58. Laurberg, M. et al. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J. Mol. Biol. 303, 593–603 (2000).

    Article  CAS  Google Scholar 

  59. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).

    Article  CAS  Google Scholar 

  60. Borowski, C., Rodnina, M.V. & Wintermeyer, W. Truncated elongation factor G lacking the G domain promotes translocation of the 3′ end but not of the anticodon domain of peptidyl-tRNA. Proc. Natl. Acad. Sci. USA 93, 4202–4206 (1996).

    Article  CAS  Google Scholar 

  61. Hickerson, R., Majumdar, Z.K., Baucom, A., Clegg, R.M. & Noller, H.F. Measurement of internal movements within the 30 S ribosomal subunit using Forster resonance energy transfer. J. Mol. Biol. 354, 459–472 (2005).

    Article  CAS  Google Scholar 

  62. Culver, G.M. & Noller, H.F. In vitro reconstitution of 30S ribosomal subunits using complete set of recombinant proteins. Methods Enzymol. 318, 446–460 (2000).

    Article  CAS  Google Scholar 

  63. Lyu, Z.X., Shao, Q., Gao, Y.Q. & Zhao, X.S. Direct observation of the uptake of outer membrane proteins by the periplasmic chaperone Skp. PLoS ONE 7, e46068 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the P. Zhu laboratory and N. Gao for help and discussion. Y.Q. is supported by the Institute of Biophysics 135 Goal-oriented project, National Laboratory of Biomacromolecules (Institute of Biophysics, Chinese Academy of Sciences), and the State Key Laboratory of Molecular Biology (Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences). This work was supported by grants from the Ministry of Science and Technology of China (2012CB911000 and 2013CB531200 to Y.Q.), the National Natural Science Foundation of China (31322015, 31170756 and 31270847 to Y.Q.) and the Chinese Academy of Sciences (project KSZD-EW-Z-003 to Y.Q.).

Author information

Authors and Affiliations

Authors

Contributions

G.L., G.S., Danyang Zhang, Dejiu Zhang and Z. Li cloned constructs and performed biochemical assays. Z. Lyu and G.S. collected FRET data and with X.S.Z. analyzed the FRET data. J.D. collected X-ray data and with W.G. resolved the structures. J.A. prepared some figures and analyzed data. Y.Q. and K.H.N. analyzed all data and wrote the manuscript. All authors discussed the results and commented on the manuscript. Y.Q. directed and supervised the project.

Corresponding author

Correspondence to Yan Qin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Sequence and structure alignment of EF-G homologs.

(a) Sequence alignments of loops I and II of EF-G and homologues. EF-G, bacterial EF-G; mtEF-G1, mitochondrial EF-G orthologue (translocase); mtEF-G2, mitochondrial paralogue (terminase); Tet(O), members of the Tet(O) family mediating tetracycline resistance. Red, 100% identity of the amino acid sequence with the bacterial consensus sequence of EF-G; blue, conservative amino acid substitution.(b) The overall structure alignment of Tet (O)–GTP conformer on the ribosome (orange, PDB 3J36) in comparison with EF-G–GTP in EF-G–POST (cyan, PDB 2WRI). Domains I-III and V are indicated as common domains. The dashed line surrounded region is the specific domain, i.e. domain IV (D IV). D IVs from EF-G (dark blue) and Tet(O) (dark yellow) are aligned and zoomed-in with 90° turn.

Supplementary Figure 2 In vivo experiments of EF-G and the mutants.

(a) Colonies of E. coli cells over-expressing EF-G or its mutants on agar plates. (b) Polysome pattern of the cells in a. Without IPTG treatment (IPTG-), all mutants exhibited similar polysomes pattern as in WT EF-G cell (black curves). When the cells have been induced with ITPG, the polysomes patterns showing difference are indicated in red (strong) and pink (mild).

Supplementary Figure 3 Binding assays of EF-G and its mutants.

(a) Binding of EF-G or its mutants to vacant ribosomes was analyzed by sucrose cushion ultracentrifugation and SDS-PAGE. Bands corresponding to EF-G and the ribosomal protein S1 are indicated by the arrows. Pre: reaction mix before sucrose cushion. Su/Pe: Supernatant/Pellet after sucrose cushion. (b) The quantification of chemical probing results. TO I is shown as an example (red rectangle). Error bars, s.e.m. (n = 3 technical replicates). **P<0.01, ***P<0.001 by two-tailed Student's t test.

Supplementary Figure 4 FRET analyses of 30S head swiveling.

30S head swiveling indicated by changes in FRET efficiencies between donor Alexa 555 and acceptor Alexa 647 probes attached to S11 and S13 for the S11-Donor/S13-Acceptor pair. PRE 70S complexes were rapidly mixed with EF-G wt or the EF-G mutant S588P or Δloop II and GTP at time 0 and Alexa 647 emission was recorded. Each trace represents the average of 10 reactions.

Supplementary Figure 5 Structural comparison EF-G and D IV loops in solution and on the ribosome.

(a) The overall structure alignment of EF-G in the GTP (PDB 2OM7) and GDP (PDB 2WRI) conformations on the ribosome. When D IVs are aligned and zoomed-in with 90° turn, the tip of loop I moved 10 Å towards P-site upon GTP hydrolysis, whereas loop II remained unchanged. (b) The same proteins of a but in solution. GTP conformer (PDB 1WDT), GDP conformer (PDB 1FNM). The upper tip of D V moved 25 Å. When D IVs were aligned and zoomed-in, the tip of loop I moved 8 Å in the opposite direction compared to its conformation on the ribosome. (c) Structural comparison of EF-G on POST complexes. ecEF-G and ttEF-G are extracted from E. coli and T. thermuphilus POST–EF-G complex (PDB 4KIY and 4KBV), respectively. The overall structures of the two EF-Gs were aligned or D IVs were aligned and zoomed-in with 90° turn. (d) The interface of EF-G with the DC in EF-G–POST (PDB 2WRI). Common domains of EF-G contact only the ribosome whereas D IV interacts directly with tRNA2–mRNA through its tip region. (e) The zoom-in view of the interface between D IV tip with P-tRNA–mRNA or with DC. A-tRNA (yellow) has been extracted from EF-Tu–PRE (PDB 2Y0U).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 8973 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Song, G., Zhang, D. et al. EF-G catalyzes tRNA translocation by disrupting interactions between decoding center and codon–anticodon duplex. Nat Struct Mol Biol 21, 817–824 (2014). https://doi.org/10.1038/nsmb.2869

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2869

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing