Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational changes required for H+/Cl exchange mediated by a CLC transporter

Abstract

CLC-type exchangers mediate transmembrane Cl transport. Mutations altering their gating properties cause numerous genetic disorders. However, their transport mechanism remains poorly understood. In conventional models, two gates alternatively expose substrates to the intra- or extracellular solutions. A glutamate was identified as the only gate in the CLCs, suggesting that CLCs function by a nonconventional mechanism. Here we show that transport in CLC-ec1, a prokaryotic homolog, is inhibited by cross-links constraining movement of helix O far from the transport pathway. Cross-linked CLC-ec1 adopts a wild-type–like structure, indicating stabilization of a native conformation. Movements of helix O are transduced to the ion pathway via a direct contact between its C terminus and a tyrosine that is a constitutive element of the second gate of CLC transporters. Therefore, the CLC exchangers have two gates that are coupled through conformational rearrangements outside the ion pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural arrangement of CLC-ec1.
Figure 2: Functional effects of cross-linking helices J, O and Q.
Figure 3: Structure of the A399C A432C cross-linked mutant.
Figure 4: Movement of helix O is coupled to the Cl gates.
Figure 5: I402 couples helix O to Y445.
Figure 6: Effects of cross-linking helix O on the Cl/H+ exchange stoichiometry.
Figure 7: Transport cycle for Cl/H+ exchange in the CLC transporters.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Jentsch, T.J. CLC chloride channels and transporters: from genes to protein structure, pathology and physiology. Crit. Rev. Biochem. Mol. Biol. 43, 3–36 (2008).

    CAS  PubMed  Google Scholar 

  2. Accardi, A. & Picollo, A. CLC channels and transporters: proteins with borderline personalities. Biochim. Biophys. Acta 1798, 1457–1464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427, 803–807 (2004).

    CAS  PubMed  Google Scholar 

  4. Picollo, A. & Pusch, M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436, 420–423 (2005).

    CAS  PubMed  Google Scholar 

  5. Scheel, O., Zdebik, A.A., Lourdel, S. & Jentsch, T.J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005).

    CAS  PubMed  Google Scholar 

  6. Graves, A.R., Curran, P.K., Smith, C.L. & Mindell, J.A. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

    CAS  PubMed  Google Scholar 

  7. De Angeli, A. et al. The nitrate/proton antiporter AtCLCa mediates nitrate accumulation in plant vacuoles. Nature 442, 939–942 (2006).

    CAS  PubMed  Google Scholar 

  8. Stockbridge, R.B. et al. Fluoride resistance and transport by riboswitch-controlled CLC antiporters. Proc. Natl. Acad. Sci. USA 109, 15289–15294 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dutzler, R., Campbell, E.B., Cadene, M., Chait, B.T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    CAS  PubMed  Google Scholar 

  10. Jayaram, H., Robertson, J.L., Wu, F., Williams, C. & Miller, C. Structure of a slow CLC Cl/H+ antiporter from a cyanobacterium. Biochemistry 50, 788–794 (2011).

    CAS  PubMed  Google Scholar 

  11. Feng, L., Campbell, E.B., Hsiung, Y. & MacKinnon, R. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle. Science 330, 635–641 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dutzler, R., Campbell, E.B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    CAS  PubMed  Google Scholar 

  13. Chen, T.Y., Chen, M.F. & Lin, C.W. Electrostatic control and chloride regulation of the fast gating of ClC-0 chloride channels. J. Gen. Physiol. 122, 641–651 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zúñiga, L. et al. The voltage-dependent ClC-2 chloride channel has a dual gating mechanism. J. Physiol. (Lond.) 555, 671–682 (2004).

    Google Scholar 

  15. Engh, A.M., Faraldo-Gomez, J.D. & Maduke, M. The mechanism of fast-gate opening in ClC-0. J. Gen. Physiol. 130, 335–349 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Feng, L., Campbell, E.B. & MacKinnon, R. Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters. Proc. Natl. Acad. Sci. USA 109, 11699–11704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Robertson, J.L., Kolmakova-Partensky, L. & Miller, C. Design, function and structure of a monomeric ClC transporter. Nature 468, 844–847 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguitragool, W. & Miller, C. CLC Cl /H+ transporters constrained by covalent cross-linking. Proc. Natl. Acad. Sci. USA 104, 20659–20665 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zdebik, A.A. et al. Determinants of anion-proton coupling in mammalian endosomal CLC proteins. J. Biol. Chem. 283, 4219–4227 (2008).

    CAS  PubMed  Google Scholar 

  20. Jardetzky, O. Simple allosteric model for membrane pumps. Nature 211, 969–970 (1966).

    CAS  PubMed  Google Scholar 

  21. Morth, J.P. et al. Crystal structure of the sodium-potassium pump. Nature 450, 1043–1049 (2007).

    CAS  PubMed  Google Scholar 

  22. Olesen, C. et al. The structural basis of calcium transport by the calcium pump. Nature 450, 1036–1042 (2007).

    CAS  PubMed  Google Scholar 

  23. Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaback, H.R., Smirnova, I., Kasho, V., Nie, Y. & Zhou, Y. The alternating access transport mechanism in LacY. J. Membr. Biol. 239, 85–93 (2011).

    CAS  PubMed  Google Scholar 

  25. Forrest, L.R., Krämer, R. & Ziegler, C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta 1807, 167–188 (2011).

    CAS  PubMed  Google Scholar 

  26. Perez, C., Koshy, C., Yildiz, O. & Ziegler, C. Alternating-access mechanism in conformationally asymmetric trimers of the betaine transporter BetP. Nature 490, 126–130 (2012).

    CAS  PubMed  Google Scholar 

  27. Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469–474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi, Y. Common folds and transport mechanisms of secondary active transporters. Annu. Rev. Biophys. 42, 51–72 (2013).

    PubMed  Google Scholar 

  29. Artigas, P. & Gadsby, D.C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc. Natl. Acad. Sci. USA 100, 501–505 (2003).

    CAS  PubMed  Google Scholar 

  30. Ludewig, U., Jentsch, T.J. & Pusch, M. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0. J. Physiol. (Lond.) 498, 691–702 (1997).

    CAS  Google Scholar 

  31. Pusch, M., Steinmeyer, K., Koch, M.C. & Jentsch, T.J. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the CIC-1 chloride channel. Neuron 15, 1455–1463 (1995).

    CAS  PubMed  Google Scholar 

  32. Pusch, M. Myotonia caused by mutations in the muscle chloride channel gene CLCN1. Hum. Mutat. 19, 423–434 (2002).

    CAS  PubMed  Google Scholar 

  33. Bell, S.P., Curran, P.K., Choi, S. & Mindell, J.A. Site-directed fluorescence studies of a prokaryotic ClC antiporter. Biochemistry 45, 6773–6782 (2006).

    CAS  PubMed  Google Scholar 

  34. Elvington, S.M., Liu, C. & Maduke, M. Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR. EMBO J. 28, 3090–3102 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Osteen, J.D. & Mindell, J.A. Zn2+ inhibition of CLC-4. Biophys. J. 95, 4668–4675 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Picollo, A., Malvezzi, M., Houtman, J.C. & Accardi, A. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat. Struct. Mol. Biol. 16, 1294–1301 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jayaram, H., Accardi, A., Wu, F., Williams, C. & Miller, C. Ion permeation through a Cl selective channel designed from a CLC Cl/H+ exchanger. Proc. Natl. Acad. Sci. USA 105, 11194–11199 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Picollo, A., Xu, Y., Johner, N., Bernèche, S. & Accardi, A. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+/Cl exchanger. Nat. Struct. Mol. Biol. 19, 525–531 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Accardi, A., Lobet, S., Williams, C., Miller, C. & Dutzler, R. Synergism between halide binding and proton transport in a CLC-type exchanger. J. Mol. Biol. 362, 691–699 (2006).

    CAS  PubMed  Google Scholar 

  40. Walden, M. et al. Uncoupling and turnover in a Cl/H+ exchange transporter. J. Gen. Physiol. 129, 317–329 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bykova, E.A., Zhang, X.D., Chen, T.Y. & Zheng, J. Large movement in the C terminus of CLC-0 chloride channel during slow gating. Nat. Struct. Mol. Biol. 13, 1115–1119 (2006).

    CAS  PubMed  Google Scholar 

  42. Zifarelli, G. & Pusch, M. Intracellular regulation of human ClC-5 by adenine nucleotides. EMBO Rep. 10, 1111–1116 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. De Angeli, A. et al. ATP binding to the C terminus of the Arabidopsis thaliana nitrate/proton antiporter, AtCLCa, regulates nitrate transport into plant vacuoles. J. Biol. Chem. 284, 26526–26532 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Orhan, G., Fahlke, C. & Alekov, A.K. Anion- and proton-dependent gating of ClC-4 anion/proton transporter under uncoupling conditions. Biophys. J. 100, 1233–1241 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Leisle, L., Ludwig, C.F., Wagner, F.A., Jentsch, T.J. & Stauber, T. ClC-7 is a slowly voltage-gated 2Cl-/1H+-exchanger and requires Ostm1 for transport activity. EMBO J. 30, 2140–2152 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bennetts, B. & Parker, M.W. Molecular determinants of common gating of a ClC chloride channel. Nat. Commun. 4, 2507 (2013).

    PubMed  Google Scholar 

  47. Nguitragool, W. & Miller, C. Uncoupling of a CLC Cl/H+ exchange transporter by polyatomic anions. J. Mol. Biol. 362, 682–690 (2006).

    CAS  PubMed  Google Scholar 

  48. Ludewig, U., Jentsch, T.J. & Pusch, M. Inward rectification in ClC-0 chloride channels caused by mutations in several protein regions. J. Gen. Physiol. 110, 165–171 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wollnik, B., Kubisch, C., Steinmeyer, K. & Pusch, M. Identification of functionally important regions of the muscular chloride channel CIC-1 by analysis of recessive and dominant myotonic mutations. Hum. Mol. Genet. 6, 805–811 (1997).

    CAS  PubMed  Google Scholar 

  50. Saviane, C., Conti, F. & Pusch, M. The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia. J. Gen. Physiol. 113, 457–468 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Accardi, A. et al. Separate ion pathways in a Cl/H+ exchanger. J. Gen. Physiol. 126, 563–570 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lobet, S. & Dutzler, R. Ion-binding properties of the ClC chloride selectivity filter. EMBO J. 25, 24–33 (2006).

    CAS  PubMed  Google Scholar 

  53. Iyer, R., Iverson, T.M., Accardi, A. & Miller, C. A biological role for prokaryotic ClC chloride channels. Nature 419, 715–718 (2002).

    CAS  PubMed  Google Scholar 

  54. Traverso, S., Elia, L. & Pusch, M. Gating competence of constitutively open CLC-0 mutants revealed by the interaction with a small organic inhibitor. J. Gen. Physiol. 122, 295–306 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lísal, J. & Maduke, M. The ClC-0 chloride channel is a 'broken' Cl/H+ antiporter. Nat. Struct. Mol. Biol. 15, 805–810 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. Accardi, A. & Pusch, M. Conformational changes in the pore of CLC-0. J. Gen. Physiol. 122, 277–293 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Accardi, A., Kolmakova-Partensky, L., Williams, C. & Miller, C. Ionic currents mediated by a prokaryotic homologue of CLC Cl channels. J. Gen. Physiol. 123, 109–119 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Maduke, M., Pheasant, D.J. & Miller, C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J. Gen. Physiol. 114, 713–722 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank C. Miller (Brandeis University) for the generous gift of 36Cl and O. Boudker, C. Nimigean, O. Andersen and members of the Accardi laboratory for helpful discussions and comments on the manuscript. This work was supported by US National Institutes of Health grant GM085232 and an Irma T. Hirschl–Monique Weill-Caulier Scholar Award (to A.A.).

Author information

Authors and Affiliations

Authors

Contributions

D.B., K.N. and A.P. performed experiments; D.B. and A.A. analyzed the data; A.A. designed research and wrote the paper; and all authors contributed to the editing of the manuscript.

Corresponding author

Correspondence to Alessio Accardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Effect of single-cysteine mutants on Cl transport.

Representative traces of Cl- efflux mediated by WT CLC-ec1 (black), G259C (red), A399C (green) and A432C (yellow) mutants of CLC-ec1. Averaged values of the Cl- transport rates are reported in Table 1.

Supplementary Figure 2 Gel shift assay to determine the number of free cysteines.

a-c) Time courses of reaction of the A399C and A432C single mutants (a), the A399C A432C double mutant before (b) and after (c) incubation with 30 μM Hg2+ for 60 min with 400 μM mPEG5K. Arrows denote the positions of the un-reacted and singly or doubly reacted proteins. Arrows indicate the positions of the protein when unreacted (black), singly (blue) or doubly reacted (red). d-e) Titration of Hg-induced protection from PEG-ylation of the strongly inhibited mutant A399C A432C (d) and of the non-inhibited mutant A392C T428C (e). f) Gel filtration profiles of the A399C A432C mutant before (black) and after (red) incubation with Hg2+.

Supplementary Figure 3 Hg2+ treatment completely protects the nine double mutants from PEGylation.

The proteins were incubated with 200 μM Hg2+ for 60 min prior to a 120 min incubation with 1 mM mPEG5K. Arrows denote the position of the unreacted proteins as in Supplementary Figure 2.

Supplementary Figure 4 Effect of cross-links at additional positions.

a-d) representative traces of Cl- efflux mediated by the A392C T428C (a), L252C P424C (b), A396C G429C (c) and G259C A399C (d) mutants of CLC-ec1 before (black) and after (red) crosslink formation. Average±s.e.m. of the Cl- transport rates are reported in Table 1.

Supplementary Figure 5 The A399C A432C cross-link acts on the Cl pathway.

Averaged reduction of the transport rate induced by Hg-treatment for the indicated mutants. For reference the reduction of the WT Cys-less CLC-ec1 (black) and A399C A432CHg (red) are shown as dashed lines.

Supplementary Figure 6 Structural alignment of WT and A399C A432CHg CLC-ec1.

Alignment of the structures of WT (PDBID: 1OTS, blue) and A399C/A432CHg (PDBID: 4MQX, orange) in the ion binding region (a) and of helices O and Q around the crosslink region (b). Electron densities are contoured at 1σ and the Cl- ions are represented as blue (WT) and salmon (A399C A432CHg) colored spheres.

Supplementary Figure 7 Helix O moves during the transport cycle of CLC-ec1.

a, c) Location of the crosslink between helices J and Q (A432C G259C) (a) and of the intrahelix crosslink in helix O (A396C A399C) (c). b, d) Functional effect of crosslinks at G259C A432C (b) and A396C A399C (d) before (black) and after incubation with Hg2+ (red). Mean values of the transport rates are reported in Table 1.

Supplementary Figure 8 Helix O is kinked at Gly393.

a) Ribbon representation of helix O. For clarity the backbone atoms are also shown. Gly393 is colored in green. b) Alignment of the residues comprising the central portion of helix O from CLC-ec1, rCLC-7, hCLC-5, hCLC-1 and CLC-0. Gly393 is highlighted in green and Ala399 is shown in red.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 13079 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basilio, D., Noack, K., Picollo, A. et al. Conformational changes required for H+/Cl exchange mediated by a CLC transporter. Nat Struct Mol Biol 21, 456–463 (2014). https://doi.org/10.1038/nsmb.2814

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2814

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing